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Aging can be delayed by …

� Single-gene mutations in a limited number 
of “master” genes regulating longevity

� Caloric restriction (CR) or dietary 
restriction (DR)

Anti-aging compounds:

Î Resveratrol (yeast, worms, flies, mice)
Î Spermidine (yeast, worms, flies, human 

immune cells)
Î Rapamycin (yeast, mice)

Î Caffeine (yeast)



� Longevity signaling pathways & their 

modulation by dietary & pharmacological 

interventions are evolutionarily conserved

Thus …

� The baker’s yeast is a valuable model for 

unveiling mechanisms of cellular aging in 

multicellular eukaryotes



� We identified 24 novel compounds

that greatly extend yeast longevity 

& belong to 5 chemical groups

� All these compounds are 

structurally & functionally distinct 

from currently known anti-aging 

compounds, namely resveratrol, 

spermidine, rapamycin & caffeine
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� Lithocholic acid (LCA) is one of these anti-aging 

compounds extending yeast chronological life 

span under caloric restriction (CR) conditions to a 

higher degree than that under non-CR conditions
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� The TOR & cAMP/PKA longevity signaling pathways 

are “adaptable” by nature …

� They regulate longevity only in response to certain 

changes in the organismal & intracellular nutrient & 

energy status (e.g., calorie availability)
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� However, we found that some longevity regulation 

pathways are “constitutive” or “housekeeping” by 

nature …

� They regulate longevity irrespective of the 

organismal & intracellular nutrient & energy status & 

do not overlap with the adaptable pathways
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� Under non-CR conditions, LCA targets 
“housekeeping” longevity assurance processes 

& the “adaptable” cAMP/PKA longevity pathway



Pro-aging processes:
• lipid-induced necrosis

• mitochondrial ROS production
• mitochondrial membrane potential

• mitochondrial fragmentation
• mitochondria-controlled apoptosis

Anti-aging processes:
• oxidative stress resistance
• thermal stress resistance
• stability of nuclear DNA

• stability of mitochondrial DNA
• mitochondrial respiration

LCA

� We found that LCA modulates the following
“housekeeping” longevity assurance processes
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� Under CR conditions, LCA targets only 

“housekeeping” longevity assurance processes
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� Bile acids (BA) are beneficial to 
health & longevity in mammals



� Bile acid-like dafachronic acids (DCA)
extend longevity in worms

AGING

DCA
DAF-12/DAF-16 signaling pathway

An anti-aging 
transcriptional program

Target tissues:
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Intestine, hypodermis, 
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Important observations:

� The levels of bile acids are elevated

in the long-lived Ghrhrlit/lit mice

� Cholic acid, a bile acid, administered 

to food of wild-type mice activates

transcription of numerous xenobiotic 

detoxification genes
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Therefore, it has been proposed that …

� By promoting chemical hormesis in mammals, 

bile acids - mildly toxic molecules with detergent-

like properties - may extend their longevity by 

acting as endobiotic regulators of aging



Importantly …

� Yeast do not synthesize LCA or any 

other bile acid found in mammals

Therefore, we hypothesize that  …

� Bile acids released into the 

environment by mammals may act as 

interspecies chemical signals extending 

yeast longevity within ecosystems



Mild cellular damage

More efficient protective mechanism against BA-caused mild cellular damage
Q

More efficient protective mechanism against age-related cellular damage
Q

More effective anti-aging mechanisms that are sensitive to regulation by BA

In our hypothesis …

Mammals

Yeast

BA

A gene allele that 
enables a cell to 
respond to BA by 
undergoing specific 
life-extending changes 
to its physiology

This yeast species will live longer than 

other yeast species within the ecosystem
Q

This yeast species has increased chances 

of survival



In our hypothesis …

� Bile acids released into the environment by 

mammals extend longevity of yeast species & 

other organisms that can sense these compounds

Thereby …

� Increasing their chances of survival & creating 

selective force aimed @ maintaining the ability of 

organisms composing the ecosystem to respond to 

bile acids by undergoing specific life-extending 

changes to their physiology



In our hypothesis …

� The evolution of longevity regulation 

mechanisms in yeast species & other 

organisms composing an ecosystem is driven 

by their ability to undergo specific life-

extending physiological changes in response to 

bile acids & other mildly toxic, hormetic 

compounds that are permanently or transiently 

released to the ecosystem by mammals



A mammal BA
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� Yeast are permanently exposed to BA due to 

their fecal loss by mammals

� Thus, in yeast exposed to BA released by 

mammals, BA modulate HOUSEKEEPING longevity 

assurance pathways that …

� Regulate yeast longevity irrespective of the 

number of mammals or their food supply

� Do not overlap with the adaptable TOR and 

cAMP/PKA longevity pathways



Yeasts

BA
BA

BA
BA

BA

� The quantity of BA released into the environment by 

mammals could vary due to changes in the density of 

mammalian population & abundance of food & its quality

Mammals

Abundant food 
with high nutrient 
& caloric content, 
fat mass & quality  

� Thus, in addition to the ability of yeast to respond to 

the permanently available exogenous pool of BA by 

modulating housekeeping longevity pathways …

� Yeast may have also evolved the ability to sense the 

environmental status-dependent variations of BA

abundance by modulating the ADAPTABLE TOR & 

cAMP/PKA longevity pathways
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� Another anti-aging compound, called rapamycin (RAP), 

may also act as an interspecies chemical signal

modulating longevity at the ecosystemic level

A cytostatic & 
hormetic 

molecule in 
other organisms

Inhibits growth of 
fungal competitors

� RAP extends longevity in yeast, fruit flies & mice 

by inhibiting TOR, a nutrient-sensory protein kinase 

that operates as a master negative regulator of the 

key adaptable longevity pathway



Therefore, we hypothesize that …

� The ability of yeast, fruit flies & mice 

to sense RAP produced by soil bacteria 

& then to respond by undergoing 

certain life-extending changes to their 

physiology may increase their chances 

of survival, thereby creating selective 

force for maintaining such ability



Plants & other autotrophs

Hormetic environmental stresses (UV 
light, dehydration, infection etc.)

Xenohormetic phytochemicals: 
resveratrol, caffeine & others

Fishes Flies MammalsWormsYeast

� “Xenohormetic” hypothesis (Howitz & Sinclair)

� Extend longevity of yeast, worms, fishes, flies & mammals by:

� Modulating the key enzymes of stress-response pathways
governing longevity-related processes

� Inhibiting the pro-aging TOR signaling pathway (i.e., 
exhibiting a cytostatic effect)



We propose a unified hypothesis

of the xenohormetic, hormetic & 

cytostatic selective forces driving 

the evolution of longevity 

regulation mechanisms @ the 

ecosystemic level



Xenohormetic, hormetic & cytostatic selective forces may drive the 
evolution of longevity regulation mechanisms within an ecosystem

Plants & other autotrophs

Environmental stresses

Xenohormetic 
phytochemicals 

(cytostatic but not hormetic 
molecules in other 

organisms): resveratrol, 
caffeine & others

Transiently produce

Flies

Bile acid-like 
compounds (hormetic 

molecules in other 
organisms): DCA

Permanently produce

Mammals

Bile acids (hormetic 
molecules in other 
organisms): LCA

Permanently produce

Macrocyclic lactone
(a hormetic & a cytostatic molecule 

in other organisms): rapamycin

Fishes

Soil bacteria

WormsYeast

Permanently produce



� To test the validity of our hypothesis

of the xenohormetic, hormetic & 

cytostatic selective forces driving the 

evolution of longevity regulation 

mechanisms within an ecosystem, we 

carried out the LCA-driven multistep 

selection of long-lived yeast species
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� A 3-step process of the LCA-driven experimental 
evolution of longevity regulation mechanisms

STEP 1: 1 week (~45 
generations) + 5 
weeks (ST phase)

Cell titre: 2×108/ml

Cell viability: 0.02% (-LCA) 
or 1% (+LCA)

STEP 2: Dilute 
1:100 in fresh 
medium (-LCA 

or +LCA) & 
then repeat 

STEP 1

STEP 3: Dilute 
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medium (-LCA 

or +LCA) & 
then repeat 

STEP 2
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10 randomly chosen 

colonies in a flask with 
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Freeze an aliquot of 
each culture @ - 80oC
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The number of cell 

generations in each of 

the selection steps 

prior to entry into a 

non-proliferative state 

(i.e., stationary phase 

[ST] of senescence):

(2 x 108 cells/ml) : 

(105 cells/ml) = 2,000 

~ 45 generations

� A 3-step process of the LCA-driven experimental 
evolution of longevity regulation mechanisms

STEP 1: 1 week (~45 
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Cell viability: 0.02% (-LCA) 
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then repeat 
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Enrichment factor for 

long-lived mutants by 

the end of each of the 5-

weeks selection steps (in 

LCA-treated samples):

100% viable cells (start) 

: 1% viable long-lived 

cells (end) = 102

� A 3-step process of the LCA-driven experimental 
evolution of longevity regulation mechanisms

STEP 1: 1 week (~45 
generations) + 5 
weeks (ST phase)

Cell titre: 2×108/ml
Cell viability: 0.02% (-LCA) 

or 1% (+LCA)

STEP 2: Dilute 
1:100 in fresh 
medium (-LCA 

or +LCA) & 
then repeat 

STEP 1

STEP 3: Dilute 
1:100 in fresh 
medium (-LCA 
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then repeat 
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Concentrations of LCA

used during each of the 

selection steps:

Sample 1: no LCA

Sample 2: 5 μM LCA

Sample 3: 50 μM LCA

Sample 4: 250 μM LCA

Sample 5: 10 doses x 5 

μM LCA added every 3-4 

days

� A 3-step process of the LCA-driven experimental 
evolution of longevity regulation mechanisms

STEP 1: 1 week (~45 
generations) + 5 
weeks (ST phase)

Cell titre: 2×108/ml
Cell viability: 0.02% (-LCA) 

or 1% (+LCA)

STEP 2: Dilute 
1:100 in fresh 
medium (-LCA 

or +LCA) & 
then repeat 

STEP 1

STEP 3: Dilute 
1:100 in fresh 
medium (-LCA 

or +LCA) & 
then repeat 

STEP 2

YEPD plates
Inoculate each of the 
10 randomly chosen 

colonies in a flask with 
medium without LCA

Freeze an aliquot of 
each culture @ - 80oC

Week 2
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� The fraction of long-lived mutants in a population 

of yeast is increased by the end of each of the 3 

steps of the LCA-driven experimental evolution



� The 1st step of the LA-driven experimental evolution 
of longevity regulation mechanisms in yeast

☯ No long-lived mutants have been found!



� The 2nd step of the LA-driven experimental evolution 
of longevity regulation mechanisms in yeast

Long-lived mutants!



� The 3rd step of the LA-driven experimental evolution 
of longevity regulation mechanisms in yeast

Long-lived mutants!



Conclusions:

� A long-term exposure of wild-type yeast to LCA under 

laboratory conditions results in selection of yeast species 

that live longer in the absence of LCA than their ancestor

� The order of different LCA concentrations ranked by the 

efficiency with which they cause the appearance of long-

lived species (frequencies of such appearance are shown):

� 5 μM LCA (~ 4 x 108/generation) > 10 doses x 5 μM LCA

(~ 3 x 108/generation) > 50 μM LCA (~ 1 x 108/generation) 

> 250 μM LCA (no long-lived species found)

� Because the lowest used concentration of LCA results in 

the highest frequency of long-lived species appearance, it is 

unlikely that the life-extending mutations they carry are 

due to mutagenic action of LCA



Future perspectives:

� What genes are affected by mutations responsible for the 
extended longevity of selected long-lived yeast species?

� How these mutations influence the “housekeeping” longevity-
related processes modulated by LCA in chronologically aging yeast?

� Do these mutations affect the growth rate of yeast in media with 
or without LCA?

� Will selected long-lived yeast species be able to maintain their 
ability to live longer than wild-type yeast if they undergo several 
successive passages in medium without LCA?  [Is there selective 

pressure aimed at maintaining of an “optimal” rather than a 
“maximal” chronological life span of yeast?]

� If mixed with an equal number of wild-type yeast cells, will 
selected long-lived yeast species out-grow and/or out-live them in 

medium without LCA or the opposite will happen?
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