Activation of Adaptive Cellular Networks and Hormetic Dose Response Relationships

Melvin Andersen
The Hamner Institutes for Health Sciences
Research Triangle Park, NC 27709
BELLE Conference
Amherst, MA
May 1-3, 2007
Toxicity of hypochlorous acid in Mouse RAW cells

In vitro results with various cell types show a region of increased viability before regions of toxicity

Pi et al. (2007)
Outline

- Risk assessment challenges for irritant gases in developing Reference Concentrations (RfCs)
- Biological models of thresholds, dose-dependent transitions and hormesis versus safety factors
- Choosing prototype irritants for study - e.g., irritant gases, hepatic enzyme inducers
- Moving ideas of hormesis into the risk assessment process
Reference Concentrations (RfCs) - the Process

\[\text{RfC} = \text{Benchmark Concentration} \times \text{Duration} \times \text{DAF} \]

\[\frac{\text{UF1} \times \text{UF2} \times \text{UF3}}{} \]
For Chlorine:

- To develop an RfC that takes into account:
 1. Tissue dosimetry of HCl and HOCl within the respiratory tract
 2. Dose dependent modes of action of chlorine in these tissues, and
 3. Cell response modeling of activation of adaptive cell response pathways
 4. Places U-shaped from in vitro responses in a risk assessment context
Why chlorine?

- It is a common water disinfectant, a synthetic intermediate for many commodity chemicals, and a possible target for terrorist use as a weapon.

- Good traditional toxicity data base, including an inhalation bioassay and a clear mode of action as a cellular oxidant.
Mechanistic Approaches to Irritant Gas Risk Assessments

- Mechanistic Incidence-Dose Models
- Tissue Dosimetry PBPK and/or CFD models
- Mode of Action Studies Systems Biology of Affected Signaling Pathways
Hypothesis: Oxidative stress from HOCl is the predominant mode of action for chlorine irritancy in the respiratory tract

- Chlorine rapidly hydrolyzes in aqueous conditions

- $\text{Cl}_2 + \text{H}_2\text{O} \rightarrow \text{HOCl} + \text{HCl}$

- Nasal responses observed at several ppm Cl_2 compared to 100 ppm for HCl
Reactions of HOCl with tissue produces a variety of oxidized and chlorinated products, including chlorinated aromatic amino acids. These products serve as a local biomarker for the presence of HOCl in tissues (Jarabek and Sochaski).
How do tissues respond?

Treatment of RAW cells clearly induces Nrf2, the primary mediator of antioxidant stress signaling.

Pi et al.
Then, as concentrations increase,

Studies based on work of Andre Nel and others (Science, 2006)
Mechanistic Hierarchical Dose Response Model

Tissue Phase Reactions

Cl₂ → HOCl + HCl

Dosimetry

Inhaled Stressor

(1) (2) (3)

Normal Epithelial Cell → Adaptive State

Stressed State → Pathology

Necrosis

Atrophy
A model for oxidative stress in Pathway Assist
automated model building and dose response

Cytosol

Zhang et al. (in progress)
Controlling Cell Anti-oxidant Synthesis

![Graphs showing the effect of different concentrations of antioxidants on GCLC, GSH synthetase, GSH reductase, and intracellular GSH levels over time.](image-url)
Normal adaptive feedback processes, based on negative feedback with feed forward control. **Homeostasis**
Consequences of Feedback Loop on Stressor Levels in Cells

In absence of up-regulation

Region of Regulation including altered gene expression

Toxicity

External Stressor Level - S

Internal Variable - Y
Subsequent dose response curves for toxicity in the intact animal will have an initial threshold for activation of the stress response and then a controlled region before transitioning to overt toxicity. U-shaped responses possible due to altered energy uses with up-regulation of batteries of anti-stress factors in tissues.
Prior exposure protects against HOCl exposures in vitro and enhances U-shaped dose response.
Use specific in vivo studies to develop a dose response model for activation of **oxidative stress pathways** following formaldehyde exposure and **differentiate dose regions** that activate adaptive responses at low concentrations and inflammatory and necrotic processes as concentrations increase.
It has to be interdisciplinary

- In vivo exposures - limited genomic evaluations, oxidative markers, tissue/organ responses (Ms. Jarabek)
- Genomic studies in vitro with epithelial cells in culture (Dr. Yin Chen)
- Confirmation of and mechanistic studies of anti-oxidant response activation (Dr. Jingbo Pi)
- Pathway modeling of activation of Nrf-2 signaling (Dr. Qiang Zhang)
- Functional Genomic mapping of Nrf2 signaling (Dr. Courtney Woods, Exxon-Mobil Post-Doctoral Fellow)
- ACC-LRI supported programs at The Hamner Institutes
Conclusions

- Hormesis and thresholds are likely related to activation of adaptive pathways, i.e., to regions of homeostasis.
- Use in risk assessment requires interdisciplinary development of several compelling, mechanistic prototypes - such as with irritant gases or with some hepatic enzyme inducers.
- In the absence of such well-developed examples showing basis for hormesis and non-monotonic responses, risk assessments will hold fast to threshold and low-dose linear methodologies that are now favored.
Cellular responses to stressors are frequently dichotomous

Chubb et al. (2004)
With Binary rather than Graded Responses

Population Distribution - Cells with GFP
MAP-Kinase modules provide cellular switches

- Stimulus
 - Activator
 - MKKK
 - MKK
 - MAPK
 - Substrate
 - p42
 - MAPK
 - MEK
 - MEK1
 - MOS
 - Activator
 - PG
 - Activator
 - PDGF
 - Integrin
 - Oxidative Stress
 - Src
 - MEKK2
 - MEKK1
 - C-Raf1
 - RasGTP
 - Rac1
 - Activator
 - TRAF6
 - TRAF6-TAB1/2
 - TAK1
 - MKK6
 - MKK
 - MAPK
 - MEK
 - MEKK4
 - JNK1
 - MAPK
 - MEK
 - MEKK1
 - C-Jun
 - TFs
 - Rsk1,2
 - Substrate
 - MAPK
 - MEK
 - MEK1
 - MOS
 - Activator
 - PG
 - Activator
 - Stimulus