

Exponent®

Health Sciences Group

Center for Exposure Assessment and Dose Reconstruction

A leading engineering & scientific consulting firm dedicated to helping our clients solve their technical problems.

Generic Hockey-Stick Model for Estimating Benchmark Dose and Potency

Ken Bogen, DrPH, DABT kbogen@exponent.com

Dose-Response 2010: Implications for Toxicology,
Medicine, and Risk Assessment

9th Annual Meeting of the International Dose-Response Society
April 27–28, 2010
University of Massachusetts, Amherst, MA

U.S. EPA BMDS Modeling Approach is Now Widely Used to Estimate BMD and Potency (Slope)

Some Quantal Models Used by BMDS v. 2.1.1

Risk Model Name ^a	Symbol	Risk Model Function, <i>P(d)</i> , of Dose <i>d</i>					
Linear (Quantal Linear)	(QL)	$1 - (1-p_0)\exp(-q_1d)$					
Linear-Quadratic (Multistage)	LQ (MS)	$1 - (1-p_0)\exp(-q_1d - q_2d^2)$					
Probit	PR	$1 - (1-p_0)\Phi[(d-\mu)/\sigma]$					
Logistic	LG	$p_0/[p_0 + (1-p_0)\exp(-q_1d)]$					
Weibull	WB	$p_0/[p_0 + (1-p_0)\exp(-q_1d^n)]$					
Gamma	GM	$1 - (1-p_0)[\Gamma(a, b) - \Gamma(a, d)]$					
Among BMDS models there is no hormetic model, such as:							
Hormetic	Н	LQ model with q₁ < 0					

^a BMDS-equivalent names appear in parentheses

U.S. EPA BMD Decision Tree^a is Complex and May Impose Unquantified Bias or Error

^a EPA 2008 Benchmark Dose Technical Guidance

U.S. EPA BMDS Model Selection and Estimation Process has a Dubious Statistical Basis

A Single, "Generic Hockey-Stick" (GSH) Model Suffices to Estimate BMD and Potency

- Modified "linearized" multistage model:
 - $1 \exp[-\Sigma q_i d^i]$ for $i \in G(g)$ for g dose groups
 - G(g) = any subset of $\leq g$ elements of $G = \{0, 1, ..., g-1, g+1\}$
- All nonlinear coefficients $q_i(i \neq 1) \ge 0$
- Linear ("potency") coefficient q_1 is constrained only to ensure that $R(a) \ge 0$ over the experimental dose range

A GSH Model is Adequate to Estimate BMD and Potency (continued)

A GSH Model is Adequate to Estimate BMD and Potency (continued)

- All possible coefficient combinations are optimized analytically, by iterative, weighted, constrained linear regression on logit-transformed data
- Best-estimate coefficients are those that minimize chi-square using the observed data
- Confidence bounds on q_1 and BMD are calculated by the Monte Carlo bootstrap-percentile method

Simulated Quantal-Response Data were used to Compare the Reliability of BMDS versus GHS Estimates

Risk Model	Doses <i>d_j, j</i> = 1,,5 (mg/kg/day)	$P(d=0) = p_0$	Risk Model, <i>P</i> (d) Parameters	Expected Potency, q ₁ P(d) (mg/kg/day) ⁻¹	Expected BMD ^a d ₁₀ P(d) (mg/kg/day)
L			$q_1 = 0.04$	0.04	2.63
LQ	0, 1, 2, 4, 10	0.05	$q_1 = 0.02, q_2 = 0.005$	0.02	3.01
PR			μ = 7, $σ = 2.5$	0	3.80
LG			$q_1 = 0.25$	0.0225	2.99
WB	0, 1, 2, 4, 10	0.10	$q_1 = 0.075, n = 1.5$	0_0	4.63
GM			a = 1.1, b = 20	0	2.74
Н	0, 1, 3, 9, 27	0.10	$q_1 = -0.04$, $q_2 = 0.004$	-0.04	12.2

^a Benchmark dose (BMD) = d_{10} = d||(BMR = $P(d) - p_0$ = 0.10) BMR = Benchmark Response

BMD (d_{10}) and BMDL (d_{10}^{*}) Estimates from BMDS Fits to Simulated Data

Model Used to Generate Data	nª	Expected Value, Ed ₁₀	Average Simulated Value, Ad ₁₀	Bias, Ad ₁₀ –Ed ₁₀	Bias P- Value	95% LCL, Ad ₁₀ *	d ₁₀ * Coverage ^b
L	93	2.63	3.41	0.78	6×10 ⁻⁶	2.37	0.68
LQ	99	3.01	3.04	0.03	0.78	2.24	0.79
PR	96	3.80	3.59	-0.21	0.19	2.76	0.94
LG	96	2.99	2.83	-0.15	0.46	2.04	0.90
WB	96	4.63	4.09	-0.54	0.0046	2.85	0.98
GM	94	2.74	3.21	0.47	0.0028	2.19	0.72
Н	65	12.2	12.7	0.56	0.30	9.18	0.98

a n =# good fits to 100 simulated data sets

^b Coverage = $Pr(d_{10}^* \le Ed_{10})$

Model Used to Generate Data	n	Expected Value, Eq	Average Simulated Value, Aq	Bias, A <i>q</i> –E <i>q</i>	P- Value	Aq*	<i>q</i> * Coverage ^a
L	93	0.04	0.034	0.0063	2×10 ⁻⁶	0.048	0.66
LQ	99	0.02	0.037	0.017	0	0.051	1
PR	96	0	0.030	0.030	0	0.038	1
LG	96	0.0225	0.042	0.019	0	0.058	1
WB	96	0	0.028	0.028	0	0.039	1
GM	94	0	0.036	0.036	0	0.051	1
Н	65	-0.04	0.0082	0.048	0	0.011	1 (0)

^a Coverage = $Pr(q^* \ge Eq)$; in parentheses: $Pr(q^* < 0)$

BMDS Model Fits Tend to Mis-Specify the True Model used to Simulate Data that were Fit

Model Used to	_	Percent of BMDS Fits Indicating the Following "Best" BMDS Model (percent)						
Generate Data	n	QL	MS	PR	LG	WB	GM	
L	93	67.7	1.1	19.4	7.5	4.3	0	
LQ	99	19.2	20.2	23.2	19.2	18.2	8.1	
PR	96	0	51.0	2.1	30.2	11.5	5.2	
LG	96	29.2	20.8	18.8	27.1	_11.5	8.3	
WB	96	4.2	24.0	18.8	33.3	3.1	16.7	
GM	94	22.3	9.6	11.7	20.2	2.1	40.4	
Н	65	0	47.7	0	3.1	49.2	0	

BMD (d_{10}) and BMDL (d_{10}^*) Estimates from GHS Fits to Simulated Data

Model Used to Generate Data ^a	Expected Value, Ed ₁₀	Average Simulated value, Ad ₁₀	Bias, Ad ₁₀ –Ed ₁₀	Bias P- Value	Ad ₁₀ *	d ₁₀ * Coverage ^b
L	2.63	3.41	0.78	6·10 ⁻⁵	1.28	0.98
L ₁	2.63	2.83	0.19	0.12	1.16	0.98
LQ	3.01	3.13	0.12	0.44	1.39	0.97
PR	3.80	3.96	0.16	0.28	2.02	1.00
LG	2.99	3.37	0.38	0.099	1.24	0.96
WB	4.63	4.76	0.13	0.44	1.67	0.98
GM	2.74	3.49	0.74	0.002	1.26	0.97
Н	12.2	13.0	0.84	9·10 ⁻⁵	7.75	0.98
H₁	12.2	11.9	-0.25	0.095	6.91	1.00

^a Model L₁ and H₁ fits were all conditioned on |q| > 0

^b Coverage = $Pr(d_{10}^* < Ed_{10})$

Model Used to Generate Data	Expected value, Eq	Average Simulated Value, Aq	Bias, A <i>q</i> –E <i>q</i>	P- Value	Aq*	<i>q</i> * Coverage ^a
L	0.04	0.032	-0.0085	0.001	0.092	0.97
L ₁	0.04	0.038	-0.0019	0.39	0.10	0.98
LQ	0.02	0.027	0.0068	0.13	0.085	0.97
PR	0	0.00051	0.00051	0.84	0.053	0.83
LG	0.0225	0.025	0.0024	0.84	0.10	0.96
WB	0	-0.0012	-0.0012	0.84	0.080	0.83
GM	0	0.028	0.028	0	0.11	1.00
н	-0.04	-0.026	0.014	0	0.025	1 (0.78)
H₁	-0.04	-0.038	0.0024	0.034	0.0176	1 (0.99)

^a Coverage = $Pr(q^* \ge Eq)$; in parentheses: $Pr(q^* < 0)$

Illustrative GHS Model Application:

Anthraquinone (AQ): A known rodent carcinogen and anti-carcinogen

GHS Estimates of AQ Tumor Potency (100)

Species, Sex	Tumor Type ^a	q (mg/kg/day) ⁻¹	<i>q</i> * (mg/kg/day) ⁻¹	HE ^b q (mg/kg/day) ⁻¹	HE ^b q* (mg/kg/day) ⁻¹
Rat, M	MCL	-13	(-24, -5.0)	-68	(-130,-27)
Rat, F	MCL	-5.2	(-11,-1.0)	-33	(-67,-6.3)
Rat, F	RTAC	0.34	0.72	2.1	4.5
Mouse, M	HB	0.091	0.18	1.0	2.0
Mouse, M	HC or HB	0.22	0.34	2.5	3.8
Mouse, M	HAC or HB	0.48	0.90	5.4	10
Mouse, F	HC	0.015	0.059	0.16	0.63
Mouse, F	HAC or HB	1.1	1.7	12.	18.

^a MCL = mononuclear cell leukemia, RTAC = renal cell adenoma or carcinoma, HB = hepatoblastoma (benign or malignant), HC = hepatocellular carcinoma, HAC = hepatocellular adenoma or carcinoma.

^b HE = human equivalent

AQ Suppresses Mononuclear Cell Leukemia (MCL) in Male and Female F344/N Rats

AQ Effect on MCL in Rats Modeled as Pure Suppression (i.e., Exponential Loss)

GHS Estimates of AQ Potency for Suppressing Spontaneous MCL in Rats

Net Potency Calculation

• Net potency Q of joint effects involving tumors induced at potencies q_i must adjust for estimated background rates r_j of any tumor types purely suppressed at rates a_i

$$Q = \sum_{i=1}^{n_i} q_i - \sum_{j=1}^{m_j} r_j a_j$$

Net Human-Equivalent AQ Potency: Approach

- Equal weights were used to aggregate estimated potencies for
 - MCL suppression in male vs. female rats
 - Tumor suppression vs. induction in rats
 - HAC or HB induction in male vs. female mice
 - Tumor induction in mice vs. rats
- Standard animal-to-human surface-area adjustment

Net Human-Equivalent AQ Potency: Result

Conclusions

- The USEPA BMDS procedure does not reliably identify dose-response relationships
- BMD & potency estimates are easier to obtain by the GHS than by the BMDS procedure
- GHS estimation performs as well or better than BMDS estimation (at least for quantal data)
- The GHS model can be used to test objectively for, and to characterize, negative dose-response patterns such as AQ-induced MCL suppression in rats