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U.S. EPA BMDS Modeling Approach is Now
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Widely Used to Estimate BMD and Potency (Slope)
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Dose-Response Data

DOSE

~ BMDS Analysis
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BMDL and Slope Factor

Slope Factor (SF) = BMR/BMDL .~

SF = Potency

(BMR
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Some Quantal Models Used by BMDS v. 2.1.1

Risk Model Name® Symbol Risk Model Function, P(d), of Dose d
Linear L

(Quantal Linear) QL) 1= (1=po)exp(-q1d)
Linear-Quadratic LQ

(Multistage) (MS) 1= (1-poJexp(-q1d - o)

Probit PR 1= (1-po)®@[(d — n)/o]

Logistic LG pol[po + (1—po)exp(—q10d)]
Weibull WB po/[po + (1—po)exp(=q:1d")]
Gamma GM 1 —(1-po)[I'(a, b) — I'(a, d)]

Among BMDS models there is no hormetic model, such as:

Hormetic H LQ model with g; <0

a BMDS-equivalent names appear in parentheses
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U.S. EPA BMD DeC|S|on Tree?is Complex and
May Impose Unquantified Bias or Error

START

v

1. Choosze BMRI(=) (Section 2.2]| Yes

\ . |

2. Is model appropriate (Section 2.3.3)7 Consider another model/model option?

Yes + N
3. Does the model fit the data (Section 2.3.4-7)7 9

Yes + No

Have sufficient alternative models/model options
been considered?

Yes*

4. Calculate BMDLs (Section 2.3.8). Are they in a sufficiently No
narrow range (Section 2.3.9)? —DT Use lowest BMDL 5

Yes +
No
5. Does one model fit best (Section 2.3.9)7? H Consider combining BMDLs

Yes *

Use BMDL from the model that provides the best fit

v

6. Document the BMD analysis as outlined in reporting recommendations. (Section
2.4

aEPA 2008 Benchmark Dose Technical Guidance
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U.S. EPA BI\/IDS Model Selectlon and Estlmatlon
Process has a Dubious Statistical Basis

Only low-dose information
(0.1 is relevant to estimating true
+ o) BMD and potency

High-dose information
is largely superfluous

/
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A Single, “Generic Hockey-Stick™ (GSH) Model
Suffices to Estimate BMD and Potency

= Modified “linearized” multistage model:
= 1 —exp[-Zq; d'] for i e G(q) for g dose groups
= 5(g) = any subset of <g elements of G ={0, 1, ..., g-1, g+1}

= All nonlinear coefficients ¢, (i1#1) 20

= Linear (“potency”) coefficient g, is constrained only
to ensure that R(d) 2 0 over the experimental dose
range
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A GSH Model is Adequate to Estimate BMD and
POtenCy (continued)

Linear (potency) coefficient
constrained to ensure R(d) 20

R(d)
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A GSH Model is Adequate to Estimate BMD and
POtenCy (continued)

= All possible coefficient combinations are optimized

analytically, by iterative, weighted, constrained linear
regression on logit-transformed data

= Best-estimate coefficients are those that minimize
chi-square using the observed data

= Confidence bounds on g, and BMD are calculated by the
Monte Carlo bootstrap-percentile method



Exp0ﬂeﬂt AT umﬁl h’

sll

Simulated Quantal Response Data were used to
Compare the Reliability of BMDS versus GHS

Estimates
Expected Expected
Doses d| Potency, BMD?
Risk j=1,..,5 P(d=0) Risk Model, P(d) q1|P(d) d1o|P(d)
Model (mg/kg/day) = Po Parameters (mglkg[day) (mg/kg/day)

L g, =0.04 0.04 2.63
LQ 0,1,2,4,10 0.05 q1=0.02, g,=0.005 0.02 3.01
PR u=7,6=2.5 0 3.80
LG g = 0.25 0.0225 2.99
WB 0,1,2,4,10 010 ¢,=0.075n=15 0 4.63
GM a=1.1,b=20 0 2.74

H 01,3927 010 g;=-0.04,g.=0.004 -0.04 12.2

aBenchmark dose (BMD) = d,, = d||( BMR = P(d) — p, = 0.10)
BMR = Benchmark Response
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BMD (d,,) and BMDL (d,,") Estimates from
BMDS Fits to Simulated Data

Model Average
Used to Expected Simulated Bias 95%
Generate Value, Value, Bias, P-  LCL, dio*
Data n° Edio Ad,; Ady-Edj, Value Ad;* Coverage”
L 93 2.63 3.41 0.78 6x10° 2.37 0.68
LQ 99 3.01 3.04 0.03 0.78 2.24 0.79
PR 96 3.80 3.59 -0.21 0.19 2.76 0.94
LG 96 2.99 2.83 -0.15 0.46 2.04 0.90
WB 96 4.63 4.09 -0.54 0.0046 2.85 0.98
GM 94 2.74 3.21 0.47 0.0028 2.19 0.72
H 65 12.2 12.7 0.56 0.30 9.18 0.98

an = # good fits to 100 simulated data sets
b Coverage = Pr(d,* < Ed,()
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Potency (g, g*) Estimates from BMDS Fits to
Simulated Data

Model
Used to Average
Generate ExpeCted Simuiated Bias, P- q*
Data n Value,Eq Value,Aq Ag-Eq Value Aqg* Coverage’
L 93 0.04 0.034  -0.0063 2x10° 0.048 0.66
LQ 99 0.02 0.037 0.017 0 0.051 1
PR 96 0 0.030 0.030 0 0.038 1
LG 96 0.0225 0.042 0.019 0 0.058 1
WB 96 0 0.028 0.028 0 0.039 1
GM 94 0 0.036 0.036 0 0.051 1
H 65 -0.04 0.0082 0.048 0 0.011 1 (0)

a Coverage = Pr(g* = Eq); in parentheses: Pr(g* < 0)
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BMDS Model Fits Tend to Mis-Specify the True
Model used to Simulate Data that were Fit

Model Percent of BMDS Fits Indicating the
Used to Following “Best” BMDS Model (percent)
Generate

Data n QL MS PR LG WB GM
L 93 67.7 1.1 194 7.5 4.3 0

LQ 9 19.2 202 232 192 182 8.1
PR % O 51.0 2.1 30,2 115 5.2
LG 9% 292 208 188 271 115 83
WB % 42 240 188 333 31 16.7
GM 94 223 96 117 202 21 40.4
H 65 O 47.7 0 3.1 49.2 0
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BMD (d,,) and BMDL (d,,*) Estimates from
GHS Fits to Simulated Data

Model

Used to Expected Average Bias
Generate Value, Simulated Bias, P- dio*
Data® Ed,, Vvalue, Ady Ad,-Edy, Value Ad;* Coverage®
L 2.63 3.41 0.78 6-10° 1.28 0.98
L, 2.63 2.83 0.19 0.12 1.16 0.98
LQ 3.01 3.13 0.12 0.44 1.39 0.97
PR 3.80 3.96 0.16 0.28 2.02 1.00
LG 2.99 3.37 0.38 0.099 1.24 0.96
WB 4.63 4.76 0.13 0.44 1.67 0.98
GM 2.74 3.49 0.74 0.002 1.26 0.97
H 12.2 13.0 0.84 910° 7.75 0.98
H, 12.2 11.9 -0.25 0.095 6.91 1.00

@ Model L, and H, fits were all conditioned on |g| > 0
b Coverage = Pr(d,,* < Ed,,)
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Potency (g, g*) Estimates from GHS Fits to

Simulated Data

Model
Used to Average
Generate Expected Simulated Bias, P- q*
Data Value,Eq Value,Aq Aq-Eq Value Ag* Coverage®
L 0.04 0.032 —0.0085 0.001 0.092 0.97
L, 0.04 0.038 —0.0019 0.39 0.10 0.98
LQ 0.02 0.027 0.0068 0.13 0.085 0.97
PR 0 0.00051 0.00051 0.84 0.053 0.83
LG 0.0225 0.025 0.0024 0.84 0.10 0.96
WB 0 -0.0012 -0.0012 0.84 0.080 0.83
GM 0 0.028 0.028 0 0.11 1.00
H -0.04 —-0.026 0.014 0 0.025 1(0.78)
H, -0.04 -0.038 0.0024 0.034 0.0176 1 (0.99)

@ Coverage = Pr(g* = Eq); in parentheses: Pr(g* <0)
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Illustrative GHS Model Application:

Anthraquinone (AQ): A known rodent carcinogen and
anti-carcinogen

O
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GHS Estimates of AQ Tumor Potency (= 100)

Species, Tumor q q* HE® q HE® g*
Sex Type® (mg/kg/day)’ (mg/kg/day)’ (mg/kg/day)’ (mg/kg/day)™”
Rat, M MCL 213 (=24, -5.0) 68 (—130,-27)
Rat, F MCL 5.2 (-11,-1.0) -33 (-67,-6.3)
Rat, F RTAC 0.34 0.72 2.1 4.5
Mouse, M HB 0.091 0.18 1.0
Mouse, M  HG or 0.22 0.34 25 3.8
HB
Mouse, M HAC or 0.48 0.90 5.4 10
HB
Mouse, F HC 0.015 0.059 0.16 0.63
Mouse, F HAC or
HB 1.1 1.7 12. 18.

a MCL = mononuclear cell leukemia, RTAC = renal cell adenoma or carcinoma, HB = hepatoblastoma (benign or malignant),
HC = hepatocellular carcinoma, HAC = hepatocellular adenoma or carcinoma.
b HE = human equivalent
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AQ Suppresses I\/Iononuclear CeII eukemia
(MCL) in Male and Female F344/N Rats
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AQ Effect on I\/ICL In Rats Modeled as
Pure Suppression (i.e., Exponential Loss)
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GHS Estlmates of AQ Potency for Suppressmg
Spontaneous MCL In Rats

Female

Mononuclear cell leukemia
Rats

CUMULATIVE PROBABILITY
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NEGATIVE POTENCY
(per mg/kg-day)
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Net Potency Calculation

= Net potency Q of joint effects involving tumors
Induced at potencies ¢; must adjust for estimated
background rates r; of any tumor types purely
suppressed at rates a,

n; I8

r.
Q = 2.4 —Zl_Jr_ a;
=1 j=1 ]
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Net Human-Equivalent AQ Potency:
Approach

= Equal weights were used to aggregate estimated
potencies for

= MCL suppression in male vs. female rats
= Tumor suppression vs. induction in rats
= HAC or HB induction in male vs. female mice

= Tumor induction in mice vs. rats

= Standard animal-to-human surface-area adjustment
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Net Human-Equivalent AQ Potency:
Result
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Conclusions

= The USEPA BMDS procedure does not reliably identify
dose-response relationships

= BMD & potency estimates are easier to obtain by the
GHS than by the BMDS procedure

= GHS estimation performs as well or better than BMDS
estimation (at least for quantal data)

= The GHS model can be used to test objectively for, and
to characterize, negative dose-response patterns such
as AQ-induced MCL suppression in rats
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