
# Agriculture, insects and hormesis: evidence and considerations for study

Chris Cutler and Murali Mohan

Dept. of Environmental Sciences
Nova Scotia Agricultural College



#### The insect world

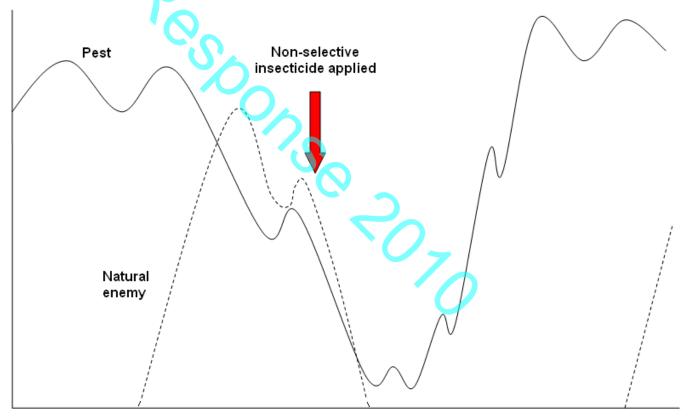


(Pedigo 2006)

#### Insecticides in agriculture

- DDT 1939
- 560 million kg of insecticide used in 2001; 75% in agriculture






#### Pest population "explosions"

- Traditionally thought to be due to natural enemy (NE)/competition elimination
- Hormesis an alternate/additional mechanism?

www.rothamsted.ac.uk

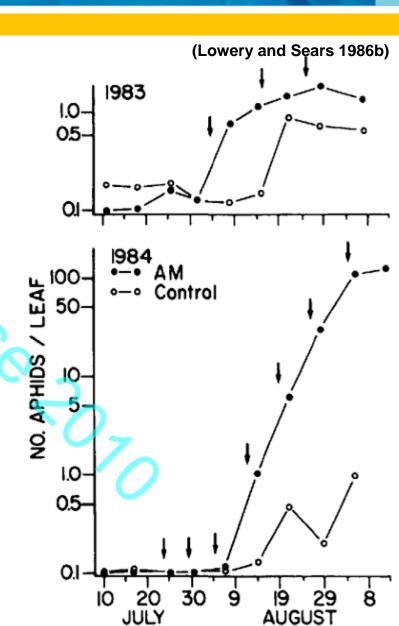
Theory of NE elimination



#### **Hormesis – relevance for insects**

- Spatial and temporal shifts in exposure concentrations
  - Drift
  - Residue degradation
  - Plant growth, poor coverage




- Consequences of pest population stimulation:
  - increased crop/commodity damage
  - additional pesticide treatments -> exacerbation of:
    - non-target impacts
    - insecticide resistance development
    - environmental contamination

#### Population stimulation in the field

- Many examples with insects and mites
- E.g. Azinphosmethyl and Myzus persciae (Lowery ad Sears 1986)

Table 2. Average number of offspring produced per day for GPA collected from AM-treated or untreated potato plots and reared in the laboratory on potato leaf disks

| Generation     | Aphid<br>treat-<br>ment | No.<br>99 | ₹ offspring<br>per day | ₹<br>gener-<br>ation |  |
|----------------|-------------------------|-----------|------------------------|----------------------|--|
| Parental A     | AM<br>CK                | 19<br>19  | 3.0a<br>2.1b           | 2.6                  |  |
| Parental B     | AM<br>CK                | 22<br>22  | 3.8a<br>3.1b           | 3.4                  |  |
| 1st generation | AM<br>CK                | 17<br>15  | 4.2a<br>4.3a           | 4.3                  |  |
| 2nd generation | AM<br>CK                | 21<br>22  | 4.9a<br>4.5a           | 4.7                  |  |

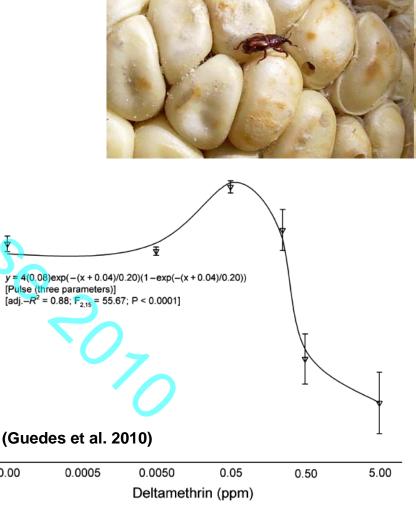


(Lowery and Sears 1986a)

#### Insecticide resistance and hormesis

Intrinsic rate of increase (r<sub>m</sub>)

0.04


0.02

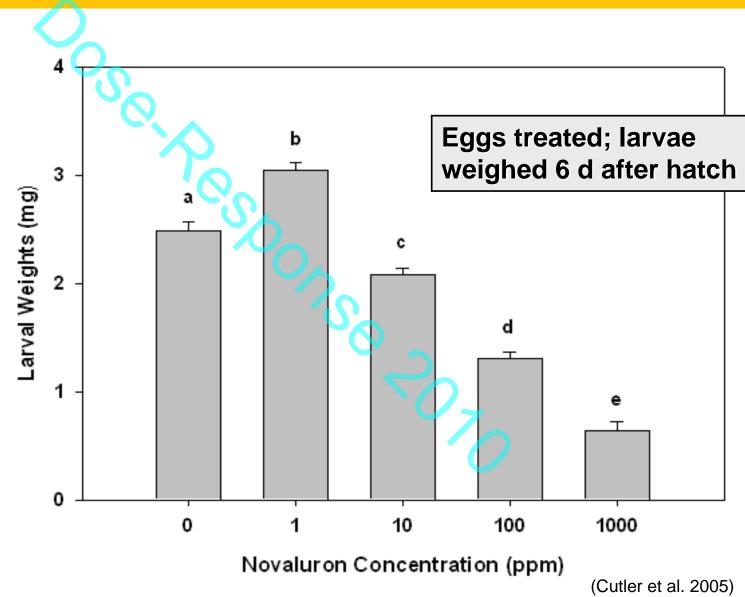
0.00

-0.02

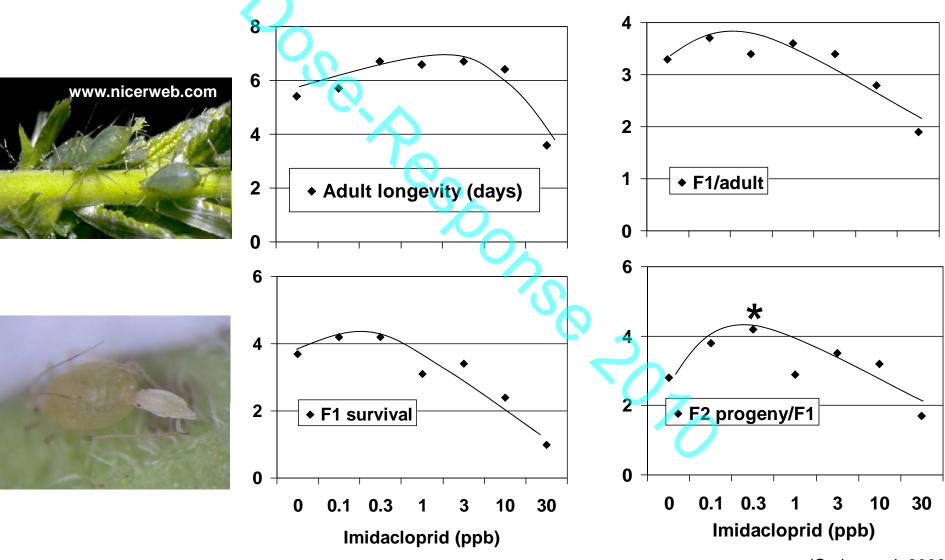
0.00

- > 100-fold reduced susceptibility not uncommon
- High-dose to a susceptible population may be a lowdose to resistant populations
- Hormetic response may boost resistant populations and increase frequency of the resistance alleles




w.viarural.com.a

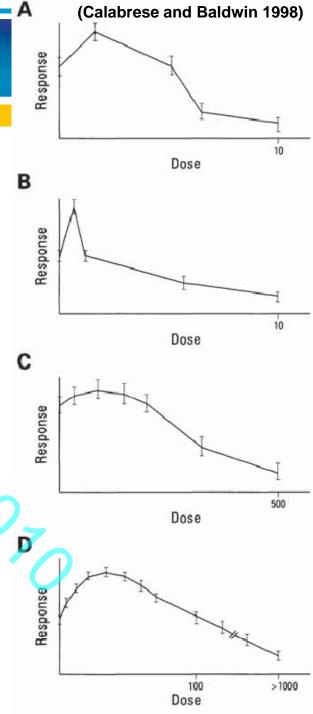
#### Novaluron and Colorado potato beetle











#### Green peach aphid and imidacloprid



(Cutler et al. 2009)

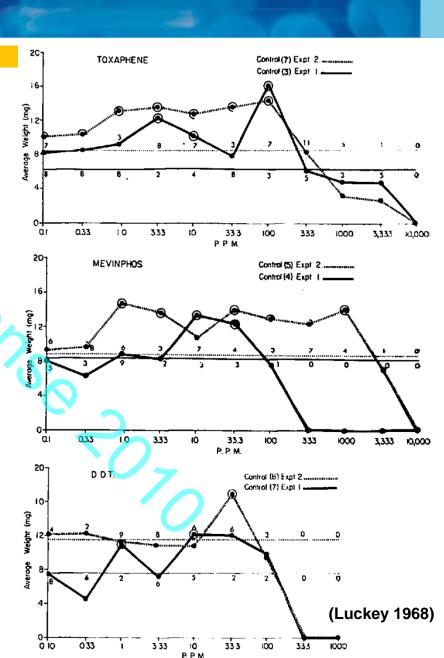
#### **Experiment considerations**

- Stimulatory effects of insecticides often reported, e.g. reproduction, longevity, weight, population growth (see Cohen 2006)
- Most experiments with insects have experimental shortcoming precluding "true" designation of hormesis
  - Too few doses
  - No or few sub-NO(A)EC
  - Inadequate replication
  - No time component
- Use "hormesis" loosely in this talk



## Curiosities and Opportunities for Study

#### **Insect hormesis semantics**


• "Hormesis"

• "Hormoligosis" (Luckey 1963, 1968)

 "Pesticide-mediated homeostatic modulation (PMHM)" (Cohen 2006)

#### Hormoligosis

- ".... minute quantities of any stressing agent (chemical, physical, psychological or social) would be stimulatory...under a wide variety of conditions, whereas larger quantities of stressing agent would be harmful to the same organism." (Luckey 1963)
- "...subharmful quantities of many stress agents may be helpful when presented to organisms in suboptimal environments" (Luckey 1968)



#### Pesticide-mediated homeostatic modulation

- Cohen 2006
  - "Hormesis, however, cannot be claimed for cases in which the observed stimulatory effects were due to exposure of non-target pests (i.e., mites) to pesticides (DDT, carbaryl, insecticidal pyrethroids or imidacloprid). Pesticides applied to non-target pests cannot be regarded as stressors since inhibition or mortality at very high doses can hardly be observed and measured." (emphasis is mine)
- E.g. mites DDT, methyl parathion

#### Pesticide-mediated homeostatic modulation

DDT <u>is</u> toxic to *T. urticae* (e.g. (Attiah and Boudreaux 1964)

Table 1.—Summary of oviposition by mites exposed to DDT under various conditions.

|                                                             | Avera                   | ge eggs laid/female         |
|-------------------------------------------------------------|-------------------------|-----------------------------|
| Species used and type of treatment                          | Parent<br>generation    | F <sub>1</sub> - generation |
| 1. T. urticae, exposed on treated paper                     |                         |                             |
| 0.1% E.C. for 2 minutes                                     | 93.8 (10)1              | 110.6 (16)                  |
| 1.0% E.C. for 2 minutes                                     | 100.0 (8)               | 111.5 (11)                  |
| Control                                                     | 126.7 (10)              | 102.8 (15)                  |
| 1.0% E.C. for 10 minutes                                    | 76.9 (10)               | 97.3(7)                     |
| 0.1% E.C. for 10 minutes                                    | 98.3 (11)               | 77.3 (7)                    |
| Control                                                     | 101.5 (12)              | 79.9 (7)                    |
| T. urticae, untreated on treated cut plants                 | F4 3 /10\               | ue o (17)                   |
| 0.1% E.C.                                                   | 74.1 (16)               | 86.9 (17)                   |
| 1.0% E.C.<br>Control                                        | \$3.0 (9)<br>112.8 (17) | 79.5 (15)                   |
|                                                             | 112.8 (17)              | 98.6 (16)                   |
| T. urticae, treated on treated cut plants<br>0.05% W.P.     | 106.8 (16)              | 94.7 (14)                   |
| 0.1% W.P.                                                   | 104.8 (15)              | 99.3 (16)                   |
| 1.0% W.P.                                                   | Killed or lost (34)     | 91.7 (8)                    |
| Control                                                     | 111,1 (18)              | 98.5 (16)                   |
| . T. urticae, treated, on untreated cut plants <sup>2</sup> | 41.17 (24)              | (10)                        |
| 1.0% W.P.                                                   | 40.7 (14)               |                             |
| 0.25% E.C.                                                  | 94.5 (8)                |                             |
| 0.5% E.C.                                                   | Killed or lost (20)     |                             |
| 1.0% E.C.                                                   | Killed or lost (20)     |                             |
| Control                                                     | \$5.4 (15)              |                             |
| . T. urticae, treated, held outside <sup>2</sup>            |                         |                             |
| 0.05% E.C. on untreated plants                              | 28.0 (6)                |                             |
| 0.1% E.C. on untreated plants                               | 25.8 (6)                |                             |
| 0.25% E.C. on untreated plants                              | 34.0 (3)                |                             |
| Control                                                     | 23.5 (8)                |                             |
| 0.05% on treated plants                                     | Killed or lost (8)      |                             |
| 0.1% on treated plants                                      | Killed or lost (8)      | www.sel.barc.usda.          |
| 0.25% on treated plants                                     | Killed or lost (8)      | WWW.Schbarc.usua.           |

#### Pesticide-mediated homeostatic modulation

- Methyl parathion and permethrin <u>are</u> toxic to spider mites
- The dose makes the poison, not the name or the target organism
  - "High dose", "non-target", etc. are relative terms
  - Designation of "hormesis" should be based on the nature of response



| (adapted from | Ayyappath | et al. | 1997) |
|---------------|-----------|--------|-------|
|---------------|-----------|--------|-------|

| Pesticide        | n    | Slope (SEM) | LC (95% CL) mg AI/ml |                  |                  |                  |  |
|------------------|------|-------------|----------------------|------------------|------------------|------------------|--|
|                  |      |             | LC <sub>05</sub>     | LC <sub>10</sub> | LC <sub>25</sub> | LC <sub>50</sub> |  |
| Permethrin       | 1233 | 1.6 (0.16)  | 0.01                 | 0.02             | 0.06             | 0.14             |  |
|                  |      |             | (0.003-0.03)         | (0.01-0.04)      | (0.03-0.08)      | (0.1-0.2)        |  |
| Methyl parathion | 1198 | 2.3 (0.29)  | 9.8                  | 14.05            | 25.50            | 49.48            |  |
|                  |      |             | (0.39-21.3)          | (1.01-26.79)     | (4.82-39.90)     | (24.95-68.46)    |  |

#### **NOAEC Doses?**

- Do all chemical stressors induce hormesis?
- Stimulation observed at doses well above the NOAEC 

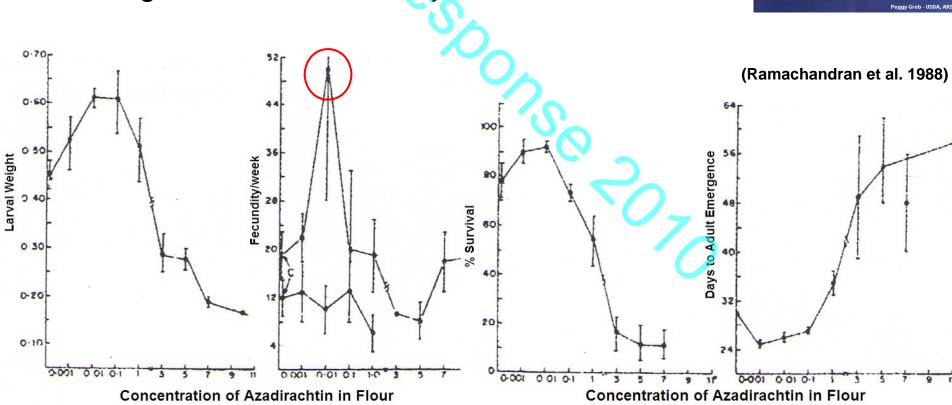
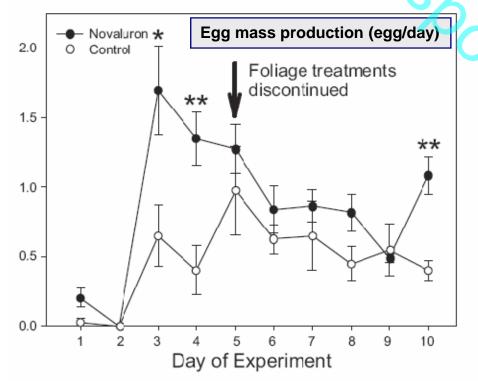
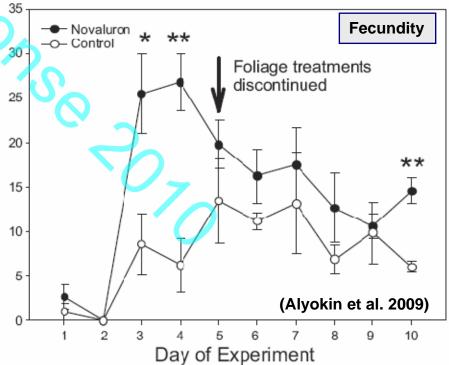

   different than hormesis?

Table 2.—Effect of lethal doses of insecticide on the number of progeny of N. lugens. (Chelliah et al. 1980)

|                    | <b>:</b>    |                     |          |                       |
|--------------------|-------------|---------------------|----------|-----------------------|
| Lethal dose 1 (LD) | Decamethrin | Methyl<br>parathion | Perthane | -                     |
| 5                  | 232.8b      | 147.3b              | 160.0a   | baikong.wordpress.com |
| 10                 | 198.0bc     | 147.5b              | 126.5a   |                       |
| 25                 | 214.0bc     | 247.3a              | 111.3a   |                       |
| 50                 | 287.5a      | 180.8b              | 159.5a   |                       |
| Control            | 163.8c      | 137.0b              | 134.0a   |                       |

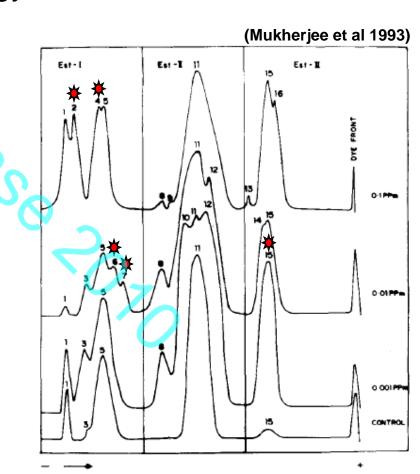
#### Magnitude of response


- Rarely is the magnitude of response greater than two-fold the control; generally 30%–60% greater than control (Calabrese and Baldwin 1988)
- Much greater stimulation may occur




#### Magnitude of response

- Greater than 30-60% stimulation → different than hormesis?
- Questions which endpoints? Consistency among groups? Mechanisms?








#### **Avenues to study mechanisms**

- Solid foundations in insect/insecticide toxicology, biochemistry and molecular biology
- Enzyme induction, e.g. esterase
  - Reproductive behavior
  - Pheromone, hormone metabolism
  - Digestion
  - Neurotransmission
  - Insecticide resistance
- Dose time response
  - Induction vary with time and dose?



#### Avenues to study mechanisms

- Many genes/factors involved in insect reproduction, endocrinology, metabolism, etc. now identified
  - Link dose-response measures to gene expression
- e.g. genes in Myzus persicae
  - Pesticide metabolism (AChE)
  - Mitochondrial carrier proteins (Adenine nucleotide translocase)
  - JH binding proteins (Mp TOL); locomotor activity
  - Wing dimorphism (OS-D gene)
  - JH precursor (Farnesyl diphosphate synthase (MpFPS1/2)
- Much work in this area is needed

#### **Behavioral and Plant Effects**

- Insecticides may stimulate feeding, modify behavior
- Insecticides may affect plant growth

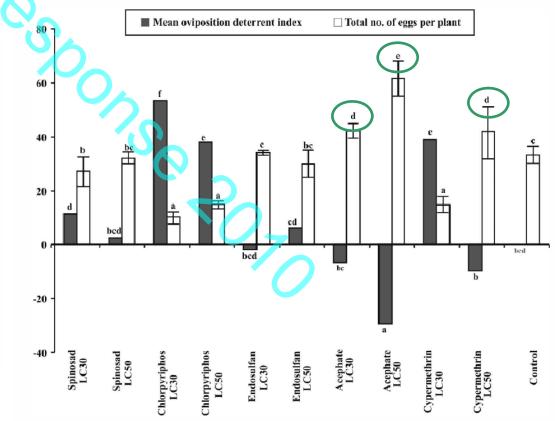
Table 2.—Feeding rate of N. lugens as influenced by insecticide treatment in rice.

| Treatment        | Counts/5 sec/<br>insect 1 | Increase/<br>decrease over<br>control (%) |  |
|------------------|---------------------------|-------------------------------------------|--|
| Decamethrin      | 6308a                     | +61                                       |  |
| Methyl parathion | 5587ab                    | +43                                       |  |
| Diazinon         | 5185b                     | +33                                       |  |
| Perthane         | 2955d                     | -24                                       |  |
| Control          | 3912c                     | -                                         |  |

(Chelliah et al 1980)

Table 1.—Effect of spray of insecticides on plant growth and on the orientational response of brown planthopper, Nilaparvata lugens (Stål) as influenced by odor stimulus and plant growth.

|                  | Orientational respon       | se as influenced by <sup>1</sup> | Changes in plant growth |                 |               |  |
|------------------|----------------------------|----------------------------------|-------------------------|-----------------|---------------|--|
| Treatment        | Odor stimulus<br>(% adults | Plant growth alighted)           | Tiller<br>(no.)         | Leaves He (no.) |               |  |
| Methyl parathion | 24.3a                      | 31.5a                            | 9.8a                    | 32.4a           | 75.3a         |  |
| Decamethrin      | 27.4a                      | 28.6Ь                            | 7.6b                    | 27.4ab          | 75.4a         |  |
| Diazinon         | 25.9a                      | 23.2c                            | 6.8b                    | 23.5b           | 71.6ab        |  |
| Perthane         | 27.2a                      | 23.4c                            | 7.2b                    | 23.5b           | <b>69.6</b> b |  |
| Control          | 26.0a                      | 24.3c                            | 7.2b                    | 23.5b           | 74.7a         |  |


#### Insecticide induced plant changes

 Cotton with less spread and reduced upper canopy leaf area were preferred for oviposition by cotton bollworm (Hari and Mahal 2008)



Table 2. Sub-lethal influences of different insecticides on various phenological characteristics of cotton plant.

| Treatment (Con- | c.)                                        | Plant<br>height<br>(cm) | Plant<br>spread<br>(cm) | Upper<br>canopy<br>leaf area<br>(cm <sup>2</sup> )* |
|-----------------|--------------------------------------------|-------------------------|-------------------------|-----------------------------------------------------|
| Spinosad        | LC <sub>30</sub><br>LC <sub>50</sub>       | 58.27 с<br>59.97 с      | 35.13 de<br>32.58 bcd   | 246.86cd<br>229.91cd                                |
| Chlorpyriphos   | ${\rm LC_{30}} \ {\rm LC_{50}}$            | 54.34 c<br>57.77 c      | 34.13 cde<br>27.27 abc  | 262.91d<br>195.04bc                                 |
| Endosulfan      | ${}^{\mathrm{LC}_{30}}_{\mathrm{LC}_{50}}$ | 58.37 c<br>50.68 bc     | 29.83 bcd<br>40.16 e    | 174.25b<br>195.78bc                                 |
| Acephate        | $LC_{30}$ $LC_{50}$                        | 40.50 a<br>53.38 c      | 20.33 a 26.66 ab        | 156.24ab<br>169.51b                                 |
| Cypermethrin    | $LC_{30}$ $LC_{50}$                        | 52.92 bc<br>43.25 ab    | 28.13 bcd<br>20.64 a    | 151.58ab<br>105.05a                                 |
| Control         | -                                          | 57.80 c                 | 34.41 cde               | 258.27d                                             |



#### Models – e.g. fitness trade-offs

- Are there trade-offs? What are they? How consistent across groups/stressors?
- Increased pupation of blow flies with cadmium spiked diet but reduced survival (Nascarella et al. 2003)



| Treatment group | Cadmium conc. of larval diet (ppm) | (a) mean% pupation (S.E.M.) | (b) mean%<br>emergence (S.E.M.) | <ul><li>(c) Pupae deaths</li><li>(% of total larvae)</li></ul> | <ul><li>(d) Stage specific deaths</li><li>(% of total pupae)</li></ul> |
|-----------------|------------------------------------|-----------------------------|---------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|
| 10              | 200.0002                           | 0.0 (0)                     | 0 (0)                           | _100                                                           | 0                                                                      |
| 9               | 20.0002                            | 13.9 (12.3)                 | 0.0(0)                          | 86                                                             | 100                                                                    |
| 8               | 2.0002                             | 70.9 (11.4)                 | 20.8 (14.9)                     | 29                                                             | 69 <sup>†</sup>                                                        |
| 7               | 0.2002                             | 80.7 (7.8)*                 | 54.5 (12.2)                     | 19                                                             | 44                                                                     |
| 6               | 0.0202                             | 86.7 (4.4)**                | 57.8 (17.0)                     | 13                                                             | 46 <sup>†</sup>                                                        |
| 5               | 0.0022                             | 80.5 (6.2)*                 | 77.0 (9.5)                      | 19                                                             | 17                                                                     |
| 4               | 0.0004                             | 80.7 (6.0)*                 | 55.3 (15.2)                     | 19                                                             | 45 <sup>†</sup>                                                        |
| 3               | 0.00022                            | 88.1 (6.5)***               | 67.7 (11.2)                     | 12                                                             | 25 <sup>†</sup>                                                        |
| 2               | 0.0002                             | 78.1 (5.3)*                 | 64.7 (14.4)                     | 22                                                             | 36 <sup>†</sup>                                                        |
| 1 (Control)     | > 0.0002                           | 74.4 (4.2)                  | 79.2 (9.5)                      | 26                                                             | 16                                                                     |

#### Models - fitness trade-offs

 Reduced duration of red cotton bug postembryonic development with eucalyptus oil exposure but reduced survival (Srivastava et al. 1995)



Postembryonic developmental data of Dysdercus koenigii in relation to a single exposure of nymphs to eucalyptus oil volatiles

| Age at exposure (days) | Duration of exposure | Nymphal condition  | Nymphal<br>mortality<br>N = 100 | Total PED (± SE) (                 | time, Mean<br>in days)           | Numb<br>surviving |           |                                   | esh weight<br>E), (in mg.)        |
|------------------------|----------------------|--------------------|---------------------------------|------------------------------------|----------------------------------|-------------------|-----------|-----------------------------------|-----------------------------------|
| (days)                 | (hours)              | condition          | N = 100                         | Male                               | Female                           | Male              | Female    | Male                              | Female                            |
| 3                      | 2                    | Control<br>Treated | 16<br>30                        | $25.5 \pm 1.3$<br>$26.3 \pm 1.4$   | $29.9 \pm 1.4$<br>$27.2 \pm 1.5$ | 42<br>40          | 42<br>30  | $137.0 \pm 5.4$ $104.5 \pm 2.5**$ | $231.0 \pm 11.9$ $197.5 \pm 4.7*$ |
| 5                      | 3                    | Control<br>Treated | 23<br>57*                       | $19.4 \pm 0.3$<br>$19.9 \pm 0.6$   | $18.9 \pm 0.3$ $18.9 \pm 0.4$    | 46<br>26          | 31        | $145.5 \pm 3.7$ $117.0 \pm 3.0**$ | $220.0 \pm 4.4 \\ 200.5 \pm 6.8*$ |
| 10                     | 4                    | Control<br>Treated | 21<br>56*                       | $24.9 \pm 0.3$<br>$22.8 \pm 0.3**$ | $25.3 \pm 0.2$ $22.5 \pm 0.3**$  | 50<br>30**        | 29<br>14* | $106.4 \pm 1.9$ $99.6 \pm 1.8**$  | $220.4 \pm 8.9$ $195.2 \pm 2.9^*$ |
| 15                     | 5                    | Control<br>Treated | 21<br>33                        | $24.9 \pm 0.3$<br>$21.6 \pm 0.2**$ | $25.3 \pm 0.2$ $23.2 \pm 0.4**$  | 50<br>45          | 29<br>22  | $106.4 \pm 1.9 \\ 101.4 \pm 2.3$  | $220.4 \pm 8.9$ $190.9 \pm 2.9*$  |

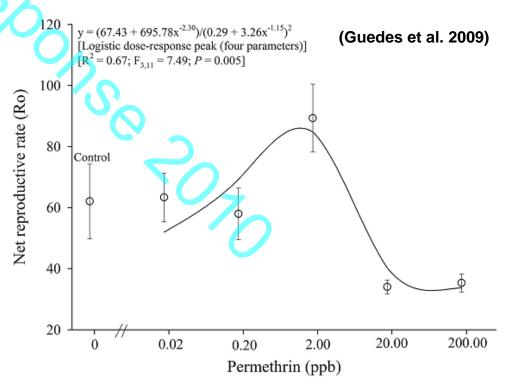
#### **Models – fitness tradeoffs**

 Sublethal imidacloprid and dinotefuran doses reduce reproduction but stimulate production of wing forms (Bao et al. 2008



| Treatment    | Copulation rate (%) | Fecundity<br>(eggs per female) | Viability (%)  | Number of offspring<br>per female |
|--------------|---------------------|--------------------------------|----------------|-----------------------------------|
| Control      | 82.31 (±4.56)a      | 333.65 (±52.77)b               | 88.20 (±4.07)a | 242.22 (±34.22)b                  |
| Imidacloprid | 76.44 (±5.09)ab     | 229.41 (±34.88)c               | 90.07 (±5.42)a | 157.95 (±26.01)c                  |
| Dinotefuran  | 70.88 (±5.42)b      | 174.90 (±31.06)d               | 86.56 (±5.30)a | 107.31 (±18.39)d                  |
| Triazophos   | 84.42 (±6.13)a      | 488.63 (±43.10)a               | 89.46 (±4.75)a | 369.02 (±45.79)a                  |
| Fenvalerate  | 83.61 (±4.32)a      | 526.22 (±64.22)a               | 91.00 (±5.29)a | 400.38 (±76.67)a                  |

**Table 4.** Percentages of macropterous females and males in macropterous and brachypterous families treated with sublethal doses of four insecticides<sup>a</sup>

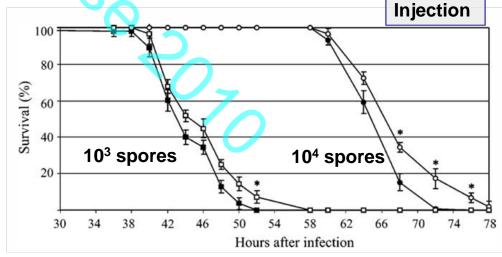

| Treatment             | Females in macropterous families | Males in macropterous families | Females in brachypterous families | Males in brachypterous<br>families |
|-----------------------|----------------------------------|--------------------------------|-----------------------------------|------------------------------------|
| Control               | 43.53 (±3.26)a                   | 52.56 (±3.57)a                 | 13.68 (±1.47)a                    | 21.75 (±2.42)a                     |
| Imidaclop <b>r</b> id | 65.27 (±4.22)b                   | 66.23 (±3.29)b                 | 35.77 (±4.02)c                    | 33.28 (±2.57)c                     |
| Dinotefuran           | 74.19 (±5.37)c                   | 72.01 (±3.32)c                 | 43.19 (±3.21)d                    | 38.72 (±2.79)d                     |
| Triazophos            | 46.24 (±4.70)a                   | 48.88 (±2.95)a                 | 15.23 (±2.18)a                    | 23.06 (±3.39)a                     |
| Fenvalerate           | 48.84 (±6.79)a                   | 55.71 (±4.34)a                 | 22.49 (±4.76)b                    | 28.49 (±3.15)b                     |

#### Hormesis in beneficial insects

 Could hormesis be utilized in biological control?



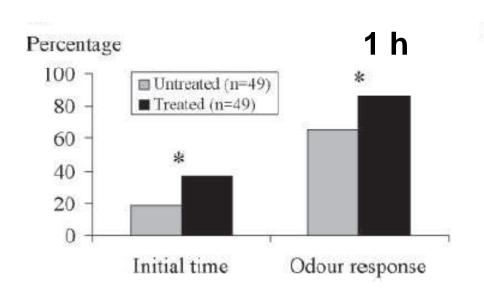
 Increase in reproductive rate of *Podisus distinctus* following single topical application of permethrin (Guedes et al. 2009)

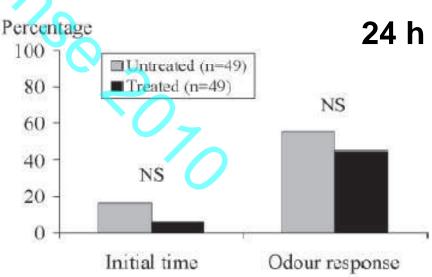



#### Hormesis in beneficial insects

 Short-term heat shock increased survival of G. mellonella larvae infected with entomopathogenic fungus B. bassiana (Wojda et al.2009)






#### Hormesis in beneficial insects

 Treatment of chlorpyrifos LC<sub>20</sub> increased Leptopilina heterotoma (parasitoid of Drosophila) probing with or with banana odor at 1 h after conditioning but not 24 h after conditioning (Rafalimanan et al. 2002)







#### **Summary – Insects and Hormesis**

- Practical and basic importance
  - Insecticides and pest management → pest resurgence, resistance, biological control, etc.
    - Tease apart hormesis from other factors causing stimulation
  - Useful models to study the phenomenon
    - Questions Doses that induce stimulation, magnitude of response; consistency across groups; mechanisms

### Thank-you

Questions?