Remote Ischemic 'Conditioning': From Inspiration . . . to Clinical Translation

Karin Przyklenk PhD

Director, Cardiovascular Research Institute
Professor, Departments of Physiology & Emergency Medicine
Wayne State University School of Medicine
Detroit MI

2014 Dose Response Conference:
Adaptive Responses in Biology and Medicine
University of Massachusetts, Amherst MA
22nd April, 2014

cardiomyocytes need oxygen, nutrients to survive and function

blood supply to myocytes provided via the coronary arteries • if coronary arteries become occluded, myocytes become ischemic

Occlusion ischemia myocardial infarction

Clinical Example

In 2014, >1 million Americans will have a 'heart attack'

Occlusion ischemia myocardial infarction

- goal: reduce myocardial infarct size
- current treatment: timely reperfusion
 - 'price' of reoxygenation: lethal reperfusion injury
- can we do better?

Occlusion ischemia myocardial infarction

- goal: reduce myocardial infarct size
- current treatment: timely reperfusion
- can we do better?
 - heart can be 'conditioned'; rendered resistant to ischemia-reperfusion injury: preconditioning, postconditioning, remote ischemic conditioning

Control

'Conditioned'

Remote Ischemic 'Conditioning'

- Inspiration
 - genesis of the concept
- Current knowledge
 - physiology, mechanisms?
- Clinical translation?

Remote Ischemic 'Conditioning'

- Inspiration
 - developed a hypothesis based on analysis, extrapolation of data from conventional ischemic preconditioning
- Current knowledge
 - physiology, mechanisms?
- Clinical translation?

Preconditioning

"... brief, intermittent episodes of ischemia have a protective effect on myocardium that is later subjected to a sustained bout of ischemia."

Murry et al, *Circulation* 1986;74:1124-1136.

i.e., that which does not destroy us makes us stronger

Reduction of Infarct Size with Preconditioning

since 1986: has been the focus of >5,000 publications (PubMed)

Preconditioning: Rat Model

In the rat model:

mean infarct size
 (expressed as % of risk
 region) was reduced in
 preconditioned hearts
 vs controls

PC

Genesis of the Concept

Whittaker & Przyklenk, *Basic Res Cardiol* 1994;89:6-15. Przyklenk & Whittaker, *J Cardiovasc Med* 2013;14:180-6.

- in control hearts:
 infarct size (% of risk
 region) was ~constant,
 irrespective of risk
 region
- in the PC group: large risk regions → greater proportion of risk region becoming necrotic

Genesis of the Concept

Interpretation: a stimulus or trigger, generated in nonischemic tissue, may contribute to the cardioprotection achieved with classic PC

Prediction: brief PC ischemia applied in one coronary vascular bed may protect remote, naïve myocardium from sustained ischemia – i.e., remote ischemic preconditioning

Whittaker & Przyklenk, *Basic Res Cardiol* 1994;89:6-15. Przyklenk & Whittaker, *J Cardiovasc Med* 2013;14:180-6.

Remote Ischemic Conditioning (RIC): First Evidence

Significant reduction of infarct size with 'intra-cardiac' remote ischemic conditioning (RIC)

Expanding the Paradigm

'Transferred' RIC

**p<0.01 vs Donor-Control

Expanding the Paradigm

'Inter-organ' RIC

**p<0.001 vs Control

Expanding the Paradigm ——

Expanding the Paradigm

- model: anesthetized pig
- PC stimulus: skeletal muscle ischemia
- endpoint: infarct size

Remote Ischemic Conditioning

Reversible ischemia *applied at a remote site* is cardioprotective; renders the heart resistant to a sustained period of ischemia

Remote Ischemic 'Conditioning'

- Inspiration
 - genesis of the concept
- Current knowledge
 - physiology, mechanisms?
- Clinical translation?

Physiology

remote

sustained ischemia

Remote stimulus (skeletal muscle):

- duration of brief, remote ischemic episodes? 5 min
- how many cycles? ~3-4
- arm(s)? leg(s)?
- complete occlusion?

Interval between remote stimulus and sustained ischemia:

- for remote ischemic <u>pre</u>conditioning . . . ?
- concepts of remote <u>per</u>- and <u>postconditioning</u>

For pre-, postconditioning:

For pre-, postconditioning:

For remote ischemic conditioning:

CARDIOPROTECTION

CARDIOPROTECTION

In 1993:

the infarct-sparing effect of remote conditioning '. . . may be mediated by factor(s) activated, produced, or transported throughout the heart during brief ischemia-reperfusion.'

In 2014...

Mechanisms: Communication

Paradigms: neuronal and/or humoral

Candidates include:

- adenosine, bradykinin, opiods
- by HPLC: 'small (<15 kDa) hydrophobic molecule'</p>
- from proteomic screens: Apo-A1
 - Hilbert et al, PLoS 2013;8:e77211
 - Hepponstall et al, PLoS 2012;7:e48284
- targeted hypotheses: SDF (stromal cell derived factor)1-α/CXCR4; change in expression of miRNAs
 - Davidson et al, Basic Res Cardiol 2013;108:377
 - Duan et al, *Cardiology* 2012;122:36-43
 - Slagsvold et al, Circ Res 2014;114:851-9

In all likelihood . . . model-dependent

CARDIOPROTECTION

In 1993:

the infarct-sparing effect of remote conditioning '... may be mediated by factor(s) activated, produced, or transported throughout the heart during brief ischemia-reperfusion.'

In 2014 . . .

- multiple candidates
- ... no integrated, unifying hypothesis

Remote Ischemic 'Conditioning'

- Inspiration
 - genesis of the concept; first evidence
- Current knowledge
 - physiology, mechanisms?
- Clinical translation?
 - ~25 published Phase II clinical trials
 - Phase III trials: in progress

Remote Ischemic 'Conditioning'

- Inspiration
 - discovery of RIC was data- and hypothesis-driven
- Current knowledge
 - understanding of the physiology, mechanisms of RIC (i.e., communication) remain incomplete
- Poised for clinical application?

Collaborators

Peter Whittaker, PhD

Michelle Maynard

Eric W. Dickson, MD

Chad E. Darling, MD

Craig Smith, MD

Dale Greiner, PhD

Thomas Sanderson, PhD

Rita Kumar, PhD

Yi Dong, MBBS

Christian Reynolds

Joe Wider

Lesley Calo

Vishnu Undyala, MS

'Heart attack' . . . scope of the problem

- >1 in 3 Americans has some form of cardiovascular disease
- in 2014, >1 million will have a heart attack
- economic cost (hospitalization; lost productivity): >\$200 billion
- human cost: >15% of persons who have a heart attack will die
- heart disease is the single largest killer of Americans

- ~25 published Phase II clinical trials
- cardiac surgery; elective PCI; primary PCI in patients with STEMI
- stimulus: multiple (3-4) 5 min episodes of limb ischemia
- primary endpoint: infarct size or its surrogate
- outcomes have been mixed . . .

... possibly a consequence of gaps in our understanding of the mechanisms of RPC