Remote Ischemic ‘Conditioning’:

From Inspiration . . . to Clinical Translation

Karin Przyklenk PhD
Director, Cardiovascular Research Institute
Professor, Departments of Physiology & Emergency Medicine
Wayne State University School of Medicine
Detroit MI

2014 Dose Response Conference:
Adaptive Responses in Biology and Medicine
University of Massachusetts, Amherst MA
22nd April, 2014
cardiomyocytes need oxygen, nutrients to survive and function

blood supply to myocytes provided via the coronary arteries

if coronary arteries become occluded, myocytes become ischemic
Clinical Example

In 2014, >1 million Americans will have a ‘heart attack’
Occlusion ➔ ischemia ➔ myocardial infarction

- goal: reduce myocardial infarct size
- current treatment: timely reperfusion
 - ‘price’ of reoxygenation: lethal reperfusion injury
- can we do better?
Occlusion → ischemia → myocardial infarction

- goal: reduce myocardial infarct size
- current treatment: timely reperfusion
- *can we do better?*
 - heart can be ‘conditioned’; rendered resistant to ischemia-reperfusion injury: preconditioning, postconditioning, remote ischemic conditioning

Control

‘Conditioned’
Remote Ischemic ‘Conditioning’

- Inspiration
 - genesis of the concept
- Current knowledge
 - physiology, mechanisms?
- Clinical translation?
Remote Ischemic ‘Conditioning’

Inspiration
- developed a hypothesis based on analysis, extrapolation of data from conventional ischemic preconditioning

Current knowledge
- physiology, mechanisms?

Clinical translation?
Preconditioning

“... brief, intermittent episodes of ischemia have a protective effect on myocardium that is later subjected to a sustained bout of ischemia.”

i.e., that which does not destroy us makes us stronger
Control:
- 40 min
- 1 hour
- 4 h

Preconditioned:
- 1 hour
- 4 h

Area of necrosis (% of risk region)

- Control
- PC

p < .01

Area of necrosis (% of risk region)
Reduction of Infarct Size with Preconditioning

since 1986: has been the focus of >5,000 publications (PubMed)
In the rat model:

- mean infarct size (expressed as % of risk region) was reduced in preconditioned hearts vs controls

Genesis of the Concept

- In control hearts: infarct size (% of risk region) was ~constant, irrespective of risk region.
- In the PC group: large risk regions → greater proportion of risk region becoming necrotic.

Risk Region (RR) vs. Area of Necrosis (AN)

Control

Classical PC

RR/LV = 20% RR/LV = 50% RR/LV = 70%

Interpretation: a stimulus or trigger, generated in nonischemic tissue, may contribute to the cardioprotection achieved with classic PC.

Prediction: brief PC ischemia applied in one coronary vascular bed may protect remote, naïve myocardium from sustained ischemia – i.e., remote ischemic preconditioning.

Remote Ischemic Conditioning (RIC): First Evidence

Significant reduction of infarct size with ‘intra-cardiac’ remote ischemic conditioning (RIC)

‘Transferred’ RIC

**p<0.01 vs Donor-Control
Expanding the Paradigm

‘Inter-organ’ RIC

Control

Classic PC

Mesenteric PC

Expanding the Paradigm
Expanding the Paradigm

- model: anesthetized pig
- PC stimulus: skeletal muscle ischemia
- endpoint: infarct size

![Graph showing infarct size comparison between control and remote PC treatment](image)
Remote Ischemic Conditioning

Reversible ischemia applied at a remote site is cardioprotective; renders the heart resistant to a sustained period of ischemia.
Remote Ischemic ‘Conditioning’

- Inspiration
 - genesis of the concept

- Current knowledge
 - physiology, mechanisms?

- Clinical translation?
Remote stimulus (skeletal muscle):
- duration of brief, remote ischemic episodes? 5 min
- how many cycles? ~3-4
- arm(s)? leg(s)?
- complete occlusion?

Interval between remote stimulus and sustained ischemia:
- for remote ischemic preconditioning . . . ?
- concepts of remote per- and postconditioning
For pre-, postconditioning:

- **trigger**
- **receptor stimulation**
- **signaling**
- **effector**

CARDIOPROTECTION
Mechanisms

For pre-, postconditioning:

- trigger
- receptor stimulation
- signaling
- effector

CARDIOPROTECTION

For remote ischemic conditioning:

- trigger
- receptor stimulation
- signaling
- effector

COMMUNICATION

CARDIOPROTECTION
In 1993:
the infarct-sparing effect of remote conditioning ‘. . . may be mediated by factor(s) activated, produced, or transported throughout the heart during brief ischemia-reperfusion.’

In 2014 . . .
Paradigms: neuronal and/or humoral

Candidates include:

- adenosine, bradykinin, opioids
- by HPLC: ‘small (<15 kDa) hydrophobic molecule’
- from proteomic screens: Apo-A1

- targeted hypotheses: SDF (stromal cell derived factor)1-α/CXCR4; change in expression of miRNAs
 - Davidson et al, Basic Res Cardiol 2013;108:377
 - Duan et al, Cardiology 2012;122:36-43

In all likelihood . . . model-dependent
In 1993:

the infarct-sparing effect of remote conditioning ‘. . . may be mediated by factor(s) activated, produced, or transported throughout the heart during brief ischemia-reperfusion.’

In 2014 . . .

- multiple candidates
- . . . no integrated, unifying hypothesis
Remote Ischemic ‘Conditioning’

- Inspiration
 - genesis of the concept; first evidence

- Current knowledge
 - physiology, mechanisms?

- Clinical translation?
 - ~25 published Phase II clinical trials
 - Phase III trials: in progress
Remote Ischemic ‘Conditioning’

Inspiration

- discovery of RIC was data- and hypothesis-driven

Current knowledge

- understanding of the physiology, mechanisms of RIC (i.e., communication) remain incomplete

Poised for clinical application?
Collaborators

Peter Whittaker, PhD

Michelle Maynard
Eric W. Dickson, MD
Chad E. Darling, MD
Craig Smith, MD
Dale Greiner, PhD
Thomas Sanderson, PhD
Rita Kumar, PhD
Yi Dong, MBBS
Christian Reynolds
Joe Wider
Lesley Calo
Vishnu Undyala, MS
‘Heart attack’ . . . scope of the problem

- >1 in 3 Americans has some form of cardiovascular disease
- in 2014, >1 million will have a heart attack
- economic cost (hospitalization; lost productivity): >$200 billion
- human cost: >15% of persons who have a heart attack will die
- heart disease is the single largest killer of Americans

~25 published Phase II clinical trials
- cardiac surgery; elective PCI; primary PCI in patients with STEMI
- stimulus: multiple (3-4) 5 min episodes of limb ischemia
- primary endpoint: infarct size or its surrogate
- outcomes have been mixed...

...possibly a consequence of gaps in our understanding of the mechanisms of RPC