Dose-Response Effects of
Low-Level Light Therapy on
Brain and Muscle

Prof. Dr. Francisco Gonzalez-Lima
The University of Texas at Austin

The 13" Annual International Conference on Dose-Response, April 23, 2014



Acknowledgements

e Julio C. Rojas, MD, PhD, who introduced LLLT
to my animal research

* Douglas Barrett, PhD, who coauthored the
human experiments



O N U hAEWDhRE

Presentation Outline

Introduction to LLLT mechanisms
Oxygen consumption effects
Cytochrome oxidase effects
Superoxide dismutase effects
Brain and muscle dose-responses
Animal cognitive effects

Human cognitive effects

Conclusions



Properties of lasers and LEDs

Sunlight has electromagnetic waves with different wavelengths
Lasers emit waves of a single wavelength (monochromatic) that have
spatial and temporal synchronization (coherence)

Light emitting diodes (LEDs) produce light in a narrow wavelength range
(quasimonochromatic)
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Principles of light-tissue interactions

Light at short wavelengths has low tissue penetration, but at high

wavelengths displays high tissue penetration
Tissues feature a relaxation time, which is the time needed to diffuse 50%

of the absorbed energy

Tissues vary in their transmittance and relaxation time
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Different effects of light on
photoreceptors and photoacceptors

Light can excite photoreceptors in the retina and pineal gland

Light can also directly excite photoacceptors in neurons

The main photoacceptor in red-to-near-infrared spectrum (620-1150 nm)
is the mitochondrial respiratory enzyme cytochrome oxidase
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LLLT rescues inhibited brain oxygen
consumption in vitro

In whole-brain homogenates, rotenone (Rot, 10 M) decreased the rate of
oxygen consumption by 75% (*p <0.05). But 0.1 J/cm2 and 1 J/cm2 doses of
NIL (633 nm LEDs, 2 mW/cm?2) reversed the inhibitory effect of rotenone.
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Hormesis of low-level light (LLLT)

Hormetic dose-response (inverted U-shaped, biphasic or bell-shaped) by
stimulation of bioenergetics at a low dose and inhibition at a high dose
Photostimulatory or photoinhibitory in vitro effects are obtained with low
(0.01-101J/cm2) and high (> 10 J/cm2) energy densities, respectively
Transcranial transmission, 5.8% rats (20x), 1.8% humans (60x)

Stimulation
A
7 -7 \\
/ \

B f, \\
Q /
= ,’ \\
(1)) , \\
© ) \
9o ‘ Y
2| x
— ! \
Ig II \
o / ‘\

J

] ] 1 .1 >

0.01 0.1 1 10 1bo\

Dose, J/icm? R

Inhibiton



Transcranial effects on brain
cytoch rome oxidase (i.: 633 nm, 2 mw/cm2, 30 min)

Table 2. Near-infrared doses and schedules

Protocol Day Dose (J/am?)

19 20 21° 22 23 24 25 26 Per day Total
NIL1 = B & 36 10.8
NIL2 ¢ 2 @ & = @ 36 21.6
NIL3 @ E & = @ @ 36 21.6

“Intravitreal injections of rotenone were done on this day.
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Transcranial effects on brain
superoxide dismutase activity
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LLLT effects on skeletal muscle

(660 nm LEDs, 9 mW/cm?2; LLLT 1=10.8, LLL2=21.6, LLL 3=32.4 J/cm2)
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660 nm, 9 mW/cm?2
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Transcranial memory facilitation in rats

e Summary
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Transcranial photobiomodulation

Photobiomodulation with near-infrared light, also called low-level light
therapy (LLLT), has been shown in both animals and humans. For example:

In 2007, Lampl et al reported that infrared laser therapy to the head
improved neurological outcome in controlled clinical trials of stroke

In 2008, Rojas et al were the first to report that upon transcranial delivery
in vivo, LLLT induces brain metabolic and antioxidant beneficial effects, as
measured by increases in cytochrome oxidase and superoxide dismutase

In 2009, Schiffer et al reported that LED treatment to the forehead may
alleviate depression in an uncontrolled pilot study of 10 patients

In 2011, Rojas and Gonzalez-Lima proposed LLLT as a novel paradigm to
treat visual, neurological, and psychological conditions based on the
stimulation of cytochrome oxidase activity in neurons

In 2012, Rojas et al were the first to report that LLLT increased extinction
memory retention and oxygen consumption in the rat prefrontal cortex in
Vivo

In 2013, Barrett and Gonzalez-Lima reported the first controlled study of
transcranial laser stimulation of psychological functions in humans



CG-5000 Class IV Laser 1064 nm, FDA-
cleared for pain relief in humans




Laser Calibration Curve
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Transcranial laser brain stimulation

Light = type of electromagnetic radiation made of photons able to transfer
energy (luminous energy)

Energy (Joules) = Power (Watts) x Time (seconds)
CG-5000 laser wavelength 1064 nm

Power 3.4 Watts

Irradiance (“intensity”) 250 mW/cm2

Exposure time 240 sec (4 min) per site

Applied radiant exposure or fluence (“dose”) 60 J/cm2 (250 mW/cm2 x
240 sec divided by 1000 mW/W)

2% of 1064 nm laser light passed through frontal bone, so 1.2 J/cm2
reaches cortical surface



Human study design

Hypothesis: We tested whether low-level laser stimulation produces
beneficial effects on frontal cortex measures of attention, memory and
mood.

Groups: Randomized, placebo-controlled blind trials of LLLT treated (n =
20) vs. active placebo control (n = 20) groups (10 males and 10 females per
group, healthy UT students ages 18-35)

Analysis: ANOVA using pre-post treatment measures as the within-subject
variable, group assignment (treated vs. control) and sex (male vs. female)
as independent variables

Tests: transcranial LLLT protocol to right forehead, targeting frontal cortex-
based cognitive tasks such as a psychomotor vigilance task (PVT) and a
delayed match-to-sample memory task (DMS) immediately after LLLT,
and also assessed emotional states before and two weeks after LLLT using
the Positive and Negative Affect Schedule (PANAS, version X)
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Experimental protocol

. Verification of screening criteria.
. Subject information collected.

Signing of informed consent form.

PANAS (pre-test).

TPQ (tri-dimensional personality questionnaire).
SSS (sensation-seeking scale, form V).

Medical history questionnaire.

One-minute practice of PVT.

Block 1 of PVT (pre-test).

. One-minute practice of DMS.

. Block 1 of DMS (pre-test).

. LLLT or active placebo.

. Block 2 of PVT (post-test).

. Block 2 of DMS (post-test).

. [Two weeks later] PANAS (post-test).
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Positive and Negative Affect

Laser effects led to two weeks of sustained positive emotional states

PANAS test: Positive Affect Score

—aA— Treated (n = 20)
—&— Control (n = 20)

Pre-Treatment

Post-Treatment

Cumulative Negative Score

21

20 -

19 1

18 -

17 1

16

PANAS test: Negative Affect Score

—aA— Treated (n = 20)
—&— Control (n = 20)

Pre-Treatment

Post-Treatment




Psychomotor Vigilance Task

Reaction time in a psychomotor vigilance task was significantly improved

PVT: Reaction Time
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Memory Retrieval Latency (sec)
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Delayed Match-to-Sample Task

Retrieval latency and correct match-to-sample trials improved significantly
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Summary

Transcranial laser stimulation improved cognitive and
emotional functions in humans

Randomized, placebo-controlled blind trials using
attention, memory and mood tests

Reaction time in a psychomotor vigilance task was
significantly improved

Memory retrieval latency and correct match-to-
sample trials improved significantly

Laser effects also led to two weeks of sustained
positive emotional states



Conclusions

 These data imply that transcranial laser stimulation
could be used as a non-invasive and efficacious
approach to increase brain functions such as those
related to cognitive and emotional dimensions.

 Transcranial infrared laser stimulation has also been
proven to be safe and successful at improving
neurological outcome in humans in controlled clinical
trials of stroke.

* This innovative approach could lead to the
development of non-invasive, performance-
enhancing interventions in healthy humans and in
those in need of neuropsychological rehabilitation.
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