

a nonprofit corporation dedicated to the best use of toxicity data for risk values

Incorporation of Mode of Action Understanding of Hormesis into Dose Response Assessment

Lynne Haber, Andrew Maier, and Michael Dourson Toxicology Excellence for Risk Assessment (TERA) Cincinnati, Ohio, USA

What is Hormesis?

- How does definition help understand the phenomenon and its implications?
- **Solution:** Focus on mechanistic understanding informs implications for risk assessment

What is Hormesis - Revisited

- Focus on shape of dose- response curve biphasic, U-shaped, J-shaped
 - Interest in statistically or biologically significant biphasic dose-response curves
- Separate dose-response shape from beneficial/not beneficial/adverse
- Separate description of the phenomenon from implications for risk assessment
- Recognize multiple modes of action
- Potentially different implications for medical applications vs. environmental risk assessment
- Separate dose-response curve for individual chemicals from issue of interactions

Key Considerations for Use of Biphasic Curves

- Is it statistically or biologically significant? (metaanalyses allowed)
- Confirm that response metric of interest has been identified
- Determine units of y axis
- Determine mode(s) of action and whether truly biphasic
- Address susceptible populations
- Consider background response and implications of other exposures

Case Studies

- Essential elements and nutrients
- Difference in target and mechanism for toxicity and benefit
- Modified spectrum of response
- Stimulatory and inhibitory receptors within the same organ
- Multiple modes of action for cancer
- Protein induction (e.g., metabolic or repair enzymes)

General Method for Noncancer Assessment

- Identify critical effect
 - "The first adverse effect, or its known precursor, that occurs to the most appropriate or sensitive species as the dose rate of an agent increases."
- Identify point of departure (POD) NOAEL, LOAEL, BMD
- Identify uncertainty factors (interspecies, intraspecies, LOAEL to NOAEL, subchronic to chronic, database)
- RfD = POD/total UF

Extrapolation from Animal Data

Figure 5a. Cumulative Response as a function of Dose for Humans and Rats. Data are hypothetical, but approximate real situations.

(Dourson et al., 2002)

General Method for Cancer Assessment

- Identify tumors with statistically significant increases and evaluate weight of evidence for carcinogenicity
- Evaluate Mode of Action, including identification of key events and human relevance
- Model data in experimental range and determine point of departure
- Low dose extrapolation
 - If acts via direct DNA reactivity or not enough information low dose linear
 - If MOA consistent with nonlinearity, develop RfD based on key event

Graphical Representation of Data and Extrapolation

9

Case Study: Essential Elements

- Typically homeostatically controlled
- Multiple targets effects when move into deficiency or toxicity range
- Deficiency and excess (toxicity) may have different modes of action

Case Study: Essential Elements

11

Case Study: Essential Elements

- Risk assessment approach modify UFs so that RfD is above the RDA;
 - Anticipate no overlap in curves
 - Different groups may have different RDAs
 - Some groups with increased nutritional needs may have RDA above RfD *for general population*
- Exceptions: hypersusceptible individuals may need to label or otherwise restrict exposure

Ethanol Dose – Responses: Different Targets

Case Study: Different Targets

- Example ethanol
- Low dose cardiovascular benefits
- Higher dose acute CNS and chronic liver effects, developmental effects
- Different dose-response curves and modes of action for risk and benefit

Case Study: Different Targets

- Different target populations pregnant women and people with chronic liver disease may choose to forgo cardiovascular benefits because they are sensitive populations for the effects of excess.
- Protection of sensitive populations would require RfD to be set below value that may benefit some
- Full information on dose-response curve can inform risk management decisions
- Is the role of risk assessment to maximize benefit or minimize harm?

Case study: Modified Spectrum of Response

- Cyclophosphamide inhibitor of protein synthesis that stops cell division
- Causes shift in immune cell populations, increases in some aspects of acquired immunity (attributed to greater sensitivity of T suppressor cells compared to other parts of immune system) but decreasing NK cells (part of innate immune system)
- Looks like J-shaped curve if only look at subset of all parameters (e.g., PFCs in SRBC assay)
- Endpoints flu vs. cancer
- Implication: Need to look at entire spectrum of response; low-dose effect may be adverse

Case study: Stimulatory and Inhibitory Receptors

- Often seen with pharmaceuticals
- Overall dose-response appears biphasic
- Dose response is composite of 2 phenomena binding to stimulatory and inhibitory receptors – or multiple binding to same receptor
- Need to differentiate
 - Is it different endpoints or same endpoint via different mechanisms?
 - Two different receptors may both provide input to same regulatory gene that integrates total response

Case study: Stimulatory and Inhibitory Receptors

- Risk assessment perspective:
- Both phases may be adverse, as departures from normal (e.g., altered motor activity)
 - If stimulatory effect adverse and sufficient magnitude, is critical effect. Otherwise, critical effect is inhibitory one.
- If different receptors provide input to same regulatory molecule, integrated response is endpoint of interest
 - Still need to consider background and timing issues

Case Study: Cancer – Multiple MOAs

- Formaldehyde well-studied; biologically-motivated dose-response model exists
- DNA-protein crosslinks formed, may lead to mutations low-dose linear
- Cytolethality/regenerative cell proliferation- J-shaped curve, may be hockey stick
- 2-stage clonal growth model linked mode of action with mutation accumulation and tumor formation

Case Study: Formaldehyde (cont.)

- Predicted tumor response very sensitive to shape of regenerative cell proliferation dose-response
 - If J-shaped, tumor response is J-shaped
 - If hockey-stick, tumor response is low-dose linear
- Risk assessment implications:
 - Sensitivity to uncertainties
 - Importance of background of regenerative cell proliferation effect of other exposures

Case Study: Protein Induction

- Examples: adaptive response; induction of metallothionein; glutathione synthesis; heat shock proteins; metabolic enzymes
- Note background damage of oxidative stress and DNA damage from endogenous reactive species
- May result in J-shaped curve or hockey stick, depending on other exposures

Considerations

- Increased metabolic enzymes may decrease toxicity of some other chemicals (decreasing background), but increase toxicity of others (increasing background)
- Net benefit depends on combination of background exposure and exposure to chemical of interest
- Importance of timing chronic low-level exposure may protect against later higher exposures, but risk managers can't assume previous (inducing) exposure. Uninduced population needs protection of traditional approach
- Doses beneficial to general population could be adverse to sensitives, and doses beneficial to sensitives could be below beneficial range for general population

Conclusions

- Consideration of mechanistic factors often affects the shape of the dose-response curve and should be considered in deriving risk values and in risk management decisions
- Current research is helping to elucidate these mechanisms
- Mechanisms that can result in biphasic curves may also warrant modifying some default assumptions in the future, particularly for cancer assessment.
- Hormesis should not yet be the principle dose-response default assumption in risk assessment