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Abstract

Developmental toxicity studies (DTS) are an important area in the field of 
toxicology In a DTS fetal litters are indirectly exposed to various levels of non-toxicology. In a DTS, fetal litters are indirectly exposed to various levels of non-
carcinogenic toxic substances through direct exposure to the host animals.  
Endpoints that are recorded in these studies include fetal weight and length, as 
well as indicators of abnormality and death. Endpoints are then measured to 
determine litter responses, which include average weight, malformation and 
death rate The dose response pattern in these studies typically appears todeath rate. The dose-response pattern in these studies typically appears to 
exhibit at least the existence of a threshold effect. The threshold dose-response 
(DR) model is the default model for non-carcinogenic risk assessment, 
according to the USEPA, and is encouraged by the agency for the use in the 
risk assessment process. Several statistical models are proposed to estimate p p p
the threshold dose and to account for other important aspects of the 
developmental toxicity study. Use of these models to different applications will 
be summarized. The advantages and disadvantages of these models, and the 
comparison to other alternative models are discussed. We, also, summarize 
potentials for future research in this field.potentials for future research in this field. 
Keywords: Developmental toxicity, Dose-group variability, Estimation,  Splines, 
Threshold



Developmental Toxicity Study (DTS)

Randomly assign pregnant animals to exposureRandomly assign pregnant animals to exposure 
levels of toxin
Outcomes measured on litters (fetuses)
Fetal endpoints of interest:

Live endpoints
body weight and length
structural malformations

Death enpointsp
Resorption
post-natal death



Implantation
Outcomes in a DTS

Implantation

Resorption

Post-Natal Death

Vi bl FViable Fetus

M lf ti St t W i htMalformation Status Weight



Modeling of Data

Equate implantation site number to litter sizeEquate implantation site number to litter size
Categorize malformations,resorptions,and post-natal 
deaths together as adverse events
Measure outcome per litter as proportion of 
adversely affected fetuses
Predict dose-response relationship by modeling P(d)

Dose:level of toxic substance (d)
Response rate: probability toxic response (P)Response rate: probability toxic response (P)



Threshold

Definition: The largest (non-zero) dose level which yields a toxic 
response that is eq i alent to response at the the control le elresponse that is equivalent to response at the the control level

1991 USEPA Guidelines for Developmental Toxicity Risk 
Assessment:Assessment: 

“…In general, a threshold is assumed for the dose-response 
curve for agents that produce developmental toxicity…”

USEPA models of non-carcinogen studies
NOAEL (no-observed-adverse-effects-level):highest experimental 
dose at which response not (statistically) different from control
Benchmark dose: lower statistical confidence limit for doseBenchmark dose: lower statistical confidence limit for dose 
corresponding to specified increased level of adverse effect over 
background level (excess risk)





Functional Form of Threshold DR Model
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Model Properties

Continuous, piecewise functionContinuous, piecewise function

Figure slideg
F would simply be an identity function, appropriate for 
continuous endpoint, such as weight; probability P could be 
replaced with W for weightreplaced with W, for weight

Discrete, binary endpoints, y p
F could be logistic or probit function
P(d) is the probability of response at dose level d



Linear Spline Model

Although above-threshold model may not beAlthough above threshold model may not be, 
below-threshold model is linear
However it is limited to only one patternHowever, it is limited to only one pattern
To make more robust, one could fit a linear 
spline model in lieu of the threshold modelspline model in lieu of the threshold model
Spline model gives more flexibility in being 
able to accomodate below threshold patternsable to accomodate below-threshold patterns



Polynomial Regression B-spline model

Theory: DeBoor (2001)Theory: DeBoor (2001)
A regression spline of order m (degree m-1) 
and k interior knots yields a function of theand k interior knots yields a function of the 
form
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Spline model for developmental study

Linear (m=2) B-spline with k=1 interior knot εLinear (m 2) B spline with k 1 interior knot ε
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G is appropriate function to accommodate the 
type of data (identity, logistic, probit, etc.)



Example DTS: DEHP administered to pregnant rats (Tyl et al., 1983)



Response Variation

As noted in the prior slide, there is noticeable degree of p g
variability in the litter responses

This variability should be accounted for in the modelingThis variability should be accounted for in the modeling 
process

Simple modification to the fixed effects models P(d) and 
P1(d):

Add random effect to model this response variability



Models modified
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The random component σZ is such that Z~N(0,1) 

Add random 
component

and Var(Z)=σ2



DEHP data (Tyl et al., 1983)

Dose 
of 

DEHP

Number
Litters

Number 
Fetuses

Average 
Litter 
Size

Number
Affected 
Fetuses

Proportion 
Affected
Fetuses

0.00 30 396 13.2 75 .189

0.025 26 320 12.3 37 .116

0.05 26 319 12.3 80 .251

0.10 24 276 11.5 192 .696

0.15 25 308 12.3 302 .981







Comparing Models

From deBoor (2001), alternate representation of the 
spline model

s(d,θ,ε)=θ1+ θ2d+ θ3(d-ε)+

If θ2=0, the model becomes

s1(d,θ,ε)=θ1+ θ3(d-ε)+

which is equivalent to the threshold modelwhich is equivalent to the threshold model



Likelihood Ratio (LR) testing

Dealing with parametric, nested models, hence LRDealing with parametric, nested models, hence LR 
test for significance

Result
p-value =0.42
Indicative of non-significance (of the spline model)

Note the limited # dose groups below thresholdNote the limited # dose groups below threshold



Factors to Improve Study Power

To better estimate threshold & other effects:To better estimate threshold & other effects:
More dose groups (below threshold)
Larger sample size (at dose groups belowLarger sample size (at dose groups below 
threshold)
Adequate dose spacingq p g
Authors

Sielken and Stevenson, 1998
Teeguarden et al., 2000
Hunt (2002) 



DYME data (Price et al., 1987)

Dose of 
DYME 
(mg/kg/

Number 
of 

Litters

Number 
of 

Fetuses

Average 
Litter 
Size

Number of 
Affected 
Fetuses

Proportion 
of  

Affected
day) Fetuses 

0 21 297 14.1 17 .057

62 5 20 242 12 1 20 08362.5 20 242 12.1 20 .083

125 24 312 13.0 35 .112

250 23 299 13 0 102 341250 23 299 13.0 102 .341

500 23 285 12.4 277 .972







LR testing: DYME data

Significance of spline over threshold modelSignificance of spline over threshold model
p-value=0.091
Much lower than for DEHP dataMuch lower than for DEHP data
Reasons? Now, 3 dose groups below 
th h ld i t d f 2threshold instead of 2
Conclusion? More dose groups needed to 
d t l i ifiadequately assess significance



Considerations when using Spline 
Approach

In DTS there are few dose groupsIn DTS, there are few dose groups
The number of noticeable changepoints in 
the pattern of the DR data will be few (if notthe pattern of the DR data will be few (if not 
non-existent)
Spline order and #knots should be based onSpline order and #knots should be based on 
these factors
Current design of DTS seems toCurrent design of DTS seems to 
accommodate this



Advantages of these models

Direct estimation of threshold or changepointDirect estimation of threshold or changepoint

Inclusion of random effects into DR functionInclusion of random effects into DR function 
to counter models such as the BB; facilitates 
estimation by allowing common methods toestimation by allowing common methods to 
find parameter estimates

Direct modeling of DR pattern



Disadvantages

Threshold can be difficult to estimateThreshold can be difficult to estimate

Current design of DTS accomodates use ofCurrent design of DTS accomodates use of 
threshold and low-order spline model; 
however modified design DTS may requirehowever, modified design DTS may require 
more complex models; can lead to estimation 
difficultiesdifficulties



Future Work

Modify models to include multiple σ parmsModify models to include multiple σ parms.
Easier method for estimating SEs, e.g., 
bootstrappingbootstrapping
Higher order spline (perhaps quadratic) 
modelmodel
More general spline model (higher order, 
more knots)more knots) 
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QUESTIONS???


