Fluoridation as a Case Study in Hormesis

Dennis E. Jones
Christopher T. De Rosa
Carolyn Tylenda

Agency for Toxic Substances and Disease Registry
ATSDR Mission

* To prevent or mitigate adverse human health effects and diminished quality of life resulting from exposure to hazardous substances in the environment.

* (Federal Register 54:33617, 1989)
ATSDR Activities

- Health Assessments
- Health Consultations
- Emergency Response
- Health Studies
- Disease Registries
- Health Education
- Toxicological Profiles
ATSDR Toxicological Profiles

- Provide Comprehensive Data Review
- Identify Data Gaps
- Identify Research Needs
- Develop MRLs
ATSDR Minimal Risk Level (MRL)

An MRL is an estimate of the daily human exposure to a hazardous substance that is likely to be without appreciable risk of adverse noncancer health effects over a specified duration of exposure.
Formula for MRL/RfD

MRL (or RfD) = \frac{\text{NOAEL/LOAEL/BMD}}{\text{UF}}

- NOAEL: no observed adverse effect level
- LOAEL: lowest observed adverse effect level
- BMD: benchmark dose (equivalent to a NOAEL)
- UF: uncertainty factor
Example BMD Curve
Hometic Response

TYPICAL DOSE RESPONSE

RESPONSE

EXPOSURE

0 20 40 60

0 1

-1
ATSDR Working Definition: Hormesis

* ...hormesis (i.e., the induction of beneficial effects by low doses of otherwise harmful physical or chemical agents)...

* De Rosa et al., 1998
ATSDR MRLs and Hormesis

- Zn
- Cr
- Mn
- Se
- Co
- Cu
Chromium Health Guidance Value
(Chronic Oral)

• NOAEL/LOAEL: Insufficient Data

• ESADDI: 50-200 µg/day

• Provisional Guidance: 0.003 mg/kg/day
Manganese Health Guidance Value (Chronic Oral)

- **NOAEL/LOAEL:** Insufficient Data
- **ESADDI:** 2-5 mg/day
- **Provisional Guidance:** 0.07 mg/kg/day
Fluoride Chemical Information

- Ionic form (e.g., salts) of Fluorine (F)
- Smallest Halogen
- Most Electronegative Element
- Most Reactive Element
- Substitutes for –OH in Hydroxyapatite
- Affects Bone and Tooth Enamel
Dental Health and Fluoride

Decay (deficient fluoride)
Healthy Teeth (optimal fluoride)
Fluorosis (excess fluoride)
Fluoride Effect on Caries and Dental Fluorosis (Dean, 1942)
Fluoride Drinking Water Recommendations

<table>
<thead>
<tr>
<th>Optimal Level</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ppm</td>
<td>Dean, 1942</td>
</tr>
<tr>
<td>0.7 – 1.2 ppm</td>
<td>DHHS, 2000</td>
</tr>
</tbody>
</table>
Health Risk of Dental Fluorosis

*...the cosmetic risk of mild enamel (dental) fluorosis...

*ADA, 2006

**...all forms of enamel fluorosis, including the severest form, have been judged to be aesthetically displeasing but not adverse to health.

**NRC, 2006
Fluoride Effect on Caries and Dental Fluorosis (Dean, 1942)
Fluoride and Bone Effects

* As with the dental effects, fluoride has both beneficial and adverse effects on bone.

* ATSDR, 2003
Fluoride Effect

Bone Mineral Density

<table>
<thead>
<tr>
<th>Study</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sowers et al., 1991</td>
<td>no effect</td>
</tr>
<tr>
<td>Kroger et al., 1994</td>
<td>increase</td>
</tr>
<tr>
<td>Cauley et al., 1995</td>
<td>no effect</td>
</tr>
<tr>
<td>Phipps et al., 1998</td>
<td>decrease, increase</td>
</tr>
<tr>
<td>Lehmann et al., 1998</td>
<td>no effect</td>
</tr>
<tr>
<td>Phipps et al., 2000</td>
<td>increase</td>
</tr>
<tr>
<td>Study</td>
<td>Results</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Madans et al., 1983</td>
<td>no effect</td>
</tr>
<tr>
<td>Simonen et al., 1985</td>
<td>decrease</td>
</tr>
<tr>
<td>Arnala et al., 1986</td>
<td>no effect</td>
</tr>
<tr>
<td>Jacobsen et al., 1990</td>
<td>increase</td>
</tr>
<tr>
<td>Cooper et al., 1990</td>
<td>no effect</td>
</tr>
<tr>
<td>Danielson et al., 1992</td>
<td>no effect</td>
</tr>
<tr>
<td>Jacobsen et al., 1993</td>
<td>decrease</td>
</tr>
<tr>
<td>Karagas et al., 1996</td>
<td>increase</td>
</tr>
</tbody>
</table>
“Effect of Long-Term Exposure to Fluoride in Drinking Water on Risks of Bone Fractures” (Li et al.; 2001)

• **QUESTION:**
 - “whether the exposure to fluoride in drinking water for cariostatic purposes increases the risk of fractures”

• **PURPOSE:**
 - “determine the prevalence of bone fractures in Chinese populations residing in rural communities of various fluoride concentrations in drinking water”
“Effect of Long-Term Exposure to Fluoride in Drinking Water on Risks of Bone Fractures”
(Li et al. ; 2001)

- 8266 Chinese Subjects
- Male/Female/Rural
- ≥ 50 Years of Age
- ≥ 25 Years Continuous Residence
- Six Fluoride Drinking Water Levels
Effect of Long-Term Exposure to Fluoride in Drinking Water on Risks of Bone Fractures;” (continued)
(Li et al. ; 2001)

• Gender, Smoking, Diet, Alcohol, Physical Activity, BMI, Ca, Al, Pb, Cd, Fe, Zn, As

• Drinking Water and Diet - Only Exposure Sources

• Bone Fracture Prevalence
Fluoride in Drinking Water

Li et al. (2001) Study

<table>
<thead>
<tr>
<th>Group</th>
<th>Fluoride (ppm)</th>
<th>n</th>
<th>Dose (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25 – 0.34</td>
<td>1363</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>0.58 – 0.73</td>
<td>1407</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>1.00 – 1.06</td>
<td>1370</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>1.45 – 2.19</td>
<td>1574</td>
<td>7.0</td>
</tr>
<tr>
<td>5</td>
<td>2.62 – 3.56</td>
<td>1051</td>
<td>8.0</td>
</tr>
<tr>
<td>6</td>
<td>4.32 – 7.97</td>
<td>1501</td>
<td>14.0</td>
</tr>
</tbody>
</table>
Bone Fracture Prevalence
Li et al. (2001) Study

- Hip Fractures - Since of 20 Years of Age
- Bone Fractures - Since 50 Years of Age
- Bone Fractures - Since 20 Years of Age
Hip Fracture Prevalence Since the Age of 20 Years
Li et al. (2001) Study

- Slight Increase Above 1.00 – 1.06 ppm
- No Significant Difference at any Fluoride Exposure Level
- Number of Hip Fractures…
 “Relatively Small”
Bone Fractures Since 50 Years of Age

Li et al. (2001) Study

Fluoride Drinking Water Concentration (ppm):
- .25-.34
- .58-.73
- 1.00-1.06
- 1.45-2.19
- 2.62-3.56
- 4.32-7.97

Bone Fracture Prevalence (%):
- 2.58-.73
- 1.00-1.06
- 1.45-2.19
- 2.62-3.56
- 4.32-7.97

ATSDR
Bone Fractures Since 20 Years of Age
Li et al. (2001) Study

Fluoride Drinking Water Concentration (ppm)

Bone Fracture Prevalence (%)

* p<0.05 as compared to the group of 1.00-1.06
Fluoride MRL Derivation

<table>
<thead>
<tr>
<th>Comparison Group</th>
<th>Fluoride Concentration (ppm)</th>
<th>Fluoride Dose (mg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOAEL</td>
<td>1.00 – 1.06</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>2.62 – 3.56</td>
<td>0.15</td>
</tr>
</tbody>
</table>

UF (uncertainty factor) = 3

\[
\text{MRL} = \frac{\text{NOAEL}}{\text{UF}} = 0.05 \text{ mg/kg/day}
\]
Bone Fracture Since 20 Years of Age
Li et al. (2001) Study

Fluoride Drinking Water Concentration (ppm)

Bone Fracture Prevalence (%)

*p < 0.05 as compared to the group of 1.00-1.06

0.25-0.34
0.58-0.73
1.00-1.06
1.45-2.19
2.62-3.56
4.32-7.97

7.41*
6.40
5.11
6.04
6.09
7.40 *
Fluoride Health Guidance Values Comparison

- MRL = 0.05 mg/kg/day
- MRL Equivalent\(_{(DW)}\) = 1.75 ppm = 1.75 mg/L
- MCL = 4 mg/L
- MCLG = 4 mg/L
- SMCL = 2 mg/L
Summary

Fluoride in Drinking Water

- Hormetic Effect – Dental Health (1 ppm)
- Hormetic Effect – Bone (1 ppm)
- Hormetic Dose - MRL Comparison Value (1 ppm)
- Only Chemical
 - 2 Hormetic Effects
 - 1 ppm Optimal Dose for Each Effect
 - Bases for 2 HGVs
Thank You
Bone Fractures Since Age 50 & Fluoride

Li et al. (2001)

<table>
<thead>
<tr>
<th>Group</th>
<th>Fluoride (ppm)</th>
<th>n</th>
<th>Fracture %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25 – 0.34</td>
<td>1363</td>
<td>4.33</td>
</tr>
<tr>
<td>2</td>
<td>0.58 – 0.73</td>
<td>1407</td>
<td>3.20</td>
</tr>
<tr>
<td>3</td>
<td>1.00 – 1.06</td>
<td>1370</td>
<td>3.28</td>
</tr>
<tr>
<td>4</td>
<td>1.45 – 2.19</td>
<td>1574</td>
<td>3.38</td>
</tr>
<tr>
<td>5</td>
<td>2.62 – 3.56</td>
<td>1051</td>
<td>3.62</td>
</tr>
<tr>
<td>6</td>
<td>4.32 – 7.97</td>
<td>1501</td>
<td>4.80</td>
</tr>
</tbody>
</table>