Hormetic immune signaling ... initiates neurological preventative health

R.P. Kraig, H.M. Mitchell, B. Christie-Pope D.M. White, and P.E. Kunkler

The University of Chicago

The Annual Meeting of the International Hormesis Society
April 28-29, 2009,
University of Massachusetts at Amherst

What is Neurological Preventative Health?

- Evidence shows
 - − ↑Brain activity <u>before</u> the onset of disease Results in ↓ injury <u>after</u> disease begins
- Involves ...
 - Hebbian synaptic plasticity and its extension
 - Environmental enrichment

Hebbian synaptic plasticity (i.e., learning LTP (long-term potentiation) ...

- "Spike" amplitude -
- Involves pre ...
- & post synaptic △s
- Seen in vivo
- Model of learning

- Including sufficient depolarization ...
 - & back-propagating action potentials (BPAPs)

Microglia & learning

- Neurons (green)
- Activate microglia (red)
- Via BPAPs?
- To enhance learning

Kunkler PE et al., J Neuroscience, 2005 Ziv Y et. al., Nat Neuroscience, 2006

Environmental enrichment (EE)

- ↑ Opportunities for
 - Volitional social, intellectual& physical activity
- Protective against
 - Epilepsy, Stroke,Alzheimer's,
 - and Parkinson's diseases
 - Aging … Mattson

How does EE-neuroprotection occur?

- † Brain activity
- Triggers microglial activation and ...
 - Irritative, low-level immune signaling and
 - Resultant interactive adaptive responses

- Thus, brain too is governed by ...
 - "If it doesn't kill you, it makes you stronger"

Utility of environment enrichment research

- Genetic propensity to disease
 - Not always the case that ...
 - 1 gene → 1 protein → 1 disease ("genetic determinism")
 - Instead, ...
 - experience (or environment) can modify disease severity
- Understanding basic mechanisms ...
 - Establish rationale for patient care empowerment
 - Lead to new treatment strategies
 - Based on "Mother Nature's" signaling
 - Would be more effective with fewer negative effects

Immune signaling & brain

- Pro-inflammatory signaling
 - Increasingly evident with normal brain function
 - And not just with disease
- Malenka TNF-α & excitability (↑AMPA, ↓GABA)
- Schatz MHC expression & synaptic plasticity
- We began exploring ...
 - How monomeric IgG, TNF-α, & microglial activation
 - Initiate signaling of neuroprotection

With disease, IgG and TNF-α destroy foreign microbes

- IgG mostly consider with disease
- Via formation of <u>immune complexes</u> that
- Help microglia engulf & destroy microbes

Destruction occurs via phagocytosis & toxic TNF-α

- Phagocytosis involves
 - Lysosome formation
 - That digests microbe
 - Using ...
 - immune complexes
- And releases
 - toxic levels of TNF-α
 - At cusps

Murray RZ et al., Science, 2005

Monomeric IgG also has signaling function in normal brain

 Via recycling endocytosis & TNF-α, not phagocytosis, involving microglia

Physiological IgG levels protect brain after days but not acutely

Physiological IgG ↑ microglial recycling endocytosis

Physiological IgG ↑TNF-α

IgG triggers hormetic TNF-α Δs

Laser dissection microscopy used to identify cellular cytokine mRNA origin

TNF-α comes from microglia

- Slices exposed to spreading depression
 - Activate microglia
 - Immune cells
 - Generate TNF-α
- Learning similar
 - ↑TNF-α
 - Microglia
- Both protect
 - Via TNF-α

Microglial inhibition by minocycline

- Acts as an anti-inflammatory agent
 - After the onset of disease
 - Where it is neuroprotective
- But before disease onset
 - It prevents neuroprotection from IgG
 - And microglial ↑ TNF-α & ↑ recycling endocytosis
- Adding support to the notion that ...
 - Low-level, irritant pro-inflammatory cytokine signaling
 - Initiates neuroprotective changes over time

In contrast, eicosanoids amplify IgG-based effects

- Eicosanoids
 - ↑ neuronal activity
 - ↑endocytosis MØ
- Microglia?
 - − ↑IgG effects
 - ↑ endocytosis
 - ↑TNF-α
 - ↑(EP2) protection

SUMMARY

- Monomeric IgG
 - Not just for immune complex Rx's & disease
- Signals in normal brain ~ to activity
 - To increase recycling endocytosis
 - And TNF-α production of activated microglia
- Cytokines alter genes/proteins to <u>INITITIATE</u>
 - Downstream, adaptive changes of ...
 - Growth factors
 - ROS system signaling
 - Glucose metabolism
- With the latter responsible for <u>EVOKING</u>
 - Activity-dependent neuroprotection

Conclusions

Brain & immune signaling

- Closely interrelated
- Traditionally examined with <u>disease</u>
- & high-level, acute toxic changes
- But

Conclusions

- Brain uses these same immune systems...
 - Involving
 - Peripheral & central
 - And innate & adaptive immunity
 - To evoke low-level, chronic irritative signals
 - Which <u>INITIATE</u>
 - Adaptive Δs that <u>EVOKE</u> the protection