Astrocyte Plasticity Revealed by Adaptations to Severe Proteotoxic Stress

Rehana Leak, Ph.D.
Plasticity

- Short duration stress
- Low dose stress
- Long duration stressors of very low dose
- Quantified by response to a second hit
- Plasticity in neurodegenerative disease models?
Vehicle pretreatment

Cortex

Striatum

Accumbens
6-OHDA toxicity is blunted by preconditioning

* $p \leq 0.05$ vs Vehicle
What happens if the stress is severe?

Dual-hit hypotheses
- Severe stress potentiates response to second hit

Alternative dual-hit hypothesis
- Severe stress may leave behind resistant cells
- These survivors may be harder to kill
- A new type of plasticity
The 26S proteasome

- Proteasome activity is inhibited in PD in nigra
 - Aggregated synuclein clogs proteasome
- Astrocytes contain aggregated synuclein
 - Both glia and neurons undergo protein-misfolding stress in PD

2 Hit Model in Primary Astrocytes

Plate Astrocytes

0 h

1st MG132 hit (pretreatment)

24 h

2nd MG132 hit (post-treatment)

48 h

Assay

72 h
Severely stressed glia resist 2nd hit

\[p \leq 0.05 \text{ vs } 0 \mu M \text{ post-treatment}; + p \leq 0.05 \text{ vs } 0 \mu M \text{ pretreatment} \]
Severe stress reduces ATP loss in glia

* $p \leq 0.05$ vs 0 µM post-treatment
Very severe stress blocks ATP loss in glia

* $p \leq 0.05$ vs 0 µM post-treatment; + $p \leq 0.05$ vs 0 µM pretreatment
Alternative Interpretations

• Remaining cells are simply refractory to MG132
 – Would not respond to 2nd hit either

• Cells are still responsive to 2nd hit, but do not die
 – 1st hit elicits adaptations (supported by ATP data)
2nd hit still has an impact on stressed cells

Ubiquitin-conjugated proteins / β-actin

MG132 post-treatment (μM)

MG132 pretreatment (μM)

Ubiquitin-conjugated proteins

β-actin

* $p \leq 0.05$, *** $p \leq 0.001$ vs 0 μM post-treatment; ++ $p \leq 0.01$ vs 0 μM pretreatment
2nd hit still has an impact on stressed cells

** p ≤ 0.05, *** p ≤ 0.001 vs 0 μM post-treatment; + p ≤ 0.05 vs 0 μM pretreatment
Impact of 2nd hit on Hsp70 is blunted

\[\text{MG132 (\(\mu\text{M}\))} \]

\begin{tabular}{c|c|c|c|c}
Pre: & 0 & 0 & 0.4 & 0.4 \\
Post: & 0 & 80 & 0 & 80 \\
\end{tabular}

\[\text{Hsp70} \]

\[\beta-\text{actin} \]

*** \(p \leq 0.001\) vs 0 \(\mu\text{M}\) post-treatment; + \(p \leq 0.05\) vs 0 \(\mu\text{M}\) pretreatment
1st hit prevents loss of glutathione

• Does BSO elicit vulnerability to 2nd hit?

** $p \leq 0.01$ vs 0 μM post-treatment; ++ $p \leq 0.05$ vs 0 μM pretreatment; ^^^ $p \leq 0.001$ vs no BSO
Glutathione loss makes stressed cells vulnerable to 2nd hit

** $p \leq 0.01$, *** $p \leq 0.001$ vs 0 μM post-treatment; +++ $p \leq 0.001$ vs 0 μM pretreatment
Can neurons also adapt to severe proteotoxicity?

Can neurons adapt to severe oxidative toxicity?

Next questions
Severely stressed primary neurons resist 2nd hit
Severe stress reduces ATP loss in primary neurons.

The bar chart shows the percentage of ATP remaining after H$_2$O$_2$ treatment at different concentrations. Arrows indicate significant reductions in ATP loss compared to controls.
Astrocytic responses to severe stress
Conclusions

• Astrocytes become progressively harder to kill
• Adaptation is glutathione dependent
• Adaptation may be fueled by a rise in ATP
• Adaptation is not dependent on autophagy

• Can stressed astrocytes retain their neurosupportive roles in disease states?
Leak Laboratory

Amanda Titler
Jessica Posimo
Hailey Choi
Yiran Jiang
Ajay Unnithan
Sree Pulugulla
Jenn Rumble
MG132 post-treatment (µM)

% DRAQ5 + Sapphire

MG132 pretreatment (µM)