Central Role of the Brain in Stress and Adaptation:

Allostasis and Allostatic Load

Bruce S. McEwen, Ph.D.

Alfred E. Mirsky Professor Head, Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology

The Rockefeller University, NY

Social environment and health Central Role of the Brain

Non-linearity abounds!!!

Protective and Damaging Effects of Stress Mediators

McEwen B. New England J. Med. 1998

Social environment and health Part 1: Allostasis and allostatic load

Stress, allostasis and allostatic load

Many targets for cortisol

Acute - enhances immune, Memory, energy replenishment, Cardiovascular function

Chronic - suppresses immune, Memory, promotes bone Mineral loss, muscle wasting; Metabolic syndrome

Mediators of allostasis leading to adaptation

Social environment and health Health-related behaviors

What we often mean by "stress" is being "stressed out"!

Feeling overwhelmed, out of control, exhausted, anxious, frustrated, angry

What happens to us?

Sleep deprivation

Eating too much of wrong things, alcohol excess, smoking

Neglecting regular, moderate exercise

Stress and your lifestyle can interact to increase allostatic load. For example, seeking solace in high-fat foods can accelerate atheroslerosis and increase secretion of cortisol, which not only adds to the accumulation of body fat but boosts your risk of heart disease, stroke, and diabetes.

All of these contribute to allostatic load Psychosocial stress is a major factor

Allostatic Load Ancillary Study Year 2000 Exam (n=769)

- Cardiovascular
 - SBP & DBP
 - Heart Rate Variability
 - Low Freq. Power
 - High Freq. Power
 - Heart rate
- Metabolism
 - HDL Cholesterol
 - LDL Cholesterol
 - Triglycerides
 - Fasting Insulin
 - Fasting Glucose
- Waist circumference

- Inflammation
 - Fibrinogen
 - CRP
 - IL-6
- SNS
 - Ur. Epinephrine
 - Ur. Norepinephrine
- HPA
 - Urinary Cortisol
 - Salivary Cortisol
 - Am rise
 - Pm decline

Allostatic load score: extreme quartile of each measure; for above max score is 18

Dr. Teresa Seeman UCLA

Findings with allostatic load battery

Predictive of mortality over 7 years

Higher education - lower allostatic load score.

African Americans have higher AL scores and a flatter gradient across education.

Neighborhood poverty - higher AL scores

Social conflict - higher AL score.

Social support - lower AL score.

Social environment and healthPart 2: Central Role of the Brain

The Human Brain Under Stress

Three Key Brain Areas Under Investigation

Prefrontal cortex

Decision making, working memory, self regulatory behaviors: mood, impulses

Helps shut off the stress response

Hippocampus

Memory of daily events; spatial memory; mood regulation

Helps shut off stress response

Amygdala

Anxiety, fear; aggression

Turns on stress hormones and increases heart rate

The Brain Under Stress

Receptors for Stress Hormone Cortisol in Hippocampus

Memory of daily events, spatial memory Mood regulation – target of depression

Adrenal steroid receptors in hippocampus

Receptors in cell nuclei regulate gene expression

Brain Under Stress

Hippocampus

Contextual, episodic, spatial memory

Mood regulation - target of depression

Stress-induced remodeling

Glutamate plays a key role

Prevented by....
Blocking glucocorticoid synthesis

Blocking NMDA receptors
Lithium
Dilantin

Antidepressants

Benzodiazepine

Deficiency of BDNF

Chronic Restraint Stress alters the Gene Expression Profile of the Hippocampus to a Novel, Heterotypic Stressor

899.06

Gray JD, Rubin TG, Hunter RG, and McEwen BS
Department of Neuroendocrinology, The Rockefeller University, New York, NY

Ongoing studies in mice by Drs. Jason Gray and Carla Nasca

Chronic restraint alters the gene expression response to a novel stressor

Figure 3. Venn Diagram of Differentially Expressed Genes from Three Different Stress Paradigms. Using pairwise uncorrected t-tests, FST, CRS + FST, and CRS + Rec + FST were compared to age-matched unstressed controls (n=4/group).

The Brain Under Stress:

Translation

Contextual, episodic, spatial memory Mood regulation – target of depression

Hippocampus ATROPHIES in:

- Major depression
- Type 2 diabetes
- Post-traumatic stress disorder
- Cushing's disease

ALSO as a result of:

- Chronic stress
- Chronic jet lag
- Lack of exercise
- Chronic inflammation

Protein/peptide hormones enter and affect the brain

A Shrinking Hippocampus?

DIABETES, MILD COGNITIVE IMPAIRMENT (MCI) and GLUCOSE INTOLERANCE

Diabetologia
DOI 10.1007/s00125-007-0602-7

ARTICLE

Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes

S. M. Gold · I. Dziobek · V. Sweat · A. Tirsi · K. Rogers · H. Bruehl · W. Tsui · S. Richardson · E. Javier · A. Convit

Fig. 1 Bivariate correlations of HbA_{1c} with hippocampal volume (residualised for cerebral vault size). The line shows the line of best fit for the entire study population. Open triangles, control subjects; filled squares, type 2 diabetic subjects. Descriptive characteristics of individuals with type 2 diabetes and control subjects are given in Table 1

Metabolic syndrome in adolescence: impact on brain

Adolescents with MetS had

- -Significantly smaller ICV-adjusted hippocampal volumes
- -Larger ICV-adjusted overall CSF volume
- --White matter abnormalities

We found the hippocampal volume reductions and increased CSF volumes remained significant and that the cognitive group differences were more dramatic, with 10 of the 17 (up from 7/17) cognitive measures now showing at least a statistical trend, all with larger effect sizes

Obesity and Metabolic Syndrome and Functional and Structural Brain Impairments in Adolescence

AUTHORS: Po Lai Yau, PhD, a Mary Grace Castro, BS, a Adrian Tagani, Wai Hon Tsui, MS, and Antonio Convit, MD Aho

Departments of °Psychiatry and °Medicine, New York University School of Medicine, New York, New York and °Nathan Kline Institute for Psychiatric Research, Orangeburg, New York

KEY WORDS

metabolic syndrome, adolescence, obesity, diffusion tensor imaging, brain abnormalities, cognitive performance, hippocampal volumes, fractional anisotropy

ABBREVIATIO

BP-blood pressure

CRP—C-reactive protein CSF—cerebrospinal fluid

CSF—cerebrospinal fluid

DLPFR—dorsolateral prefrontal region DVT—Digit Vigilance Test

FA—fractional anisotropy

HDL—high-density lipoprotein

ICV-intracranial vault

IR—insulin resistance MetS—metabolic syndrome

wets—metabolic syndrome

MPRAGE—magnetization-prepared rapid acquisition gradient

QUICKI—quantitative insulin sensitivity check index

T2DM—type 2 diabetes mellitus VANCOVA—voxelwise analysis of covariance

WM-white matter

WRAML—Wide Range Assessment of Memory and Learning WRAT—Wide Range Achievement Test

Each author made substantial contributions to this article. Dr Corwit designed, performed, and supervised the study; Drs Yau and Corwit, W. H. Tsui, M. G. Castro, and A. Tagani acquired and analyzed the data; Drs Yau and Corwit wrote the article; all authors have seen and approved the final version of the manuscript.

www.pediatrics.org/cgi/doi/10.1542/peds.2012-0324 doi:10.1542/p.gds.2012-0324

doi:10.1342/ped8.2012-0024

Accepted for publication May 31, 2012

Address correspondence to Antonio Corwit, MD, Brain, Obesity, and Diabetes Laboratory (800yLab), New York University School of Medicine, 145 East 32nd St, 8th Floor, New York, NY 10016. E-mail: antonio.convi@med.nvu.edu

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).

Copyright © 2012 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDING: Funded by the National Institutes of Health DK 083537 and, in part, by grant 1UL 1RR029893 from the National Center for Research Resources. Funded by the National Institutes of Health (NIII)

WHAT'S KNOWN ON THIS SUBJECT: Despite the dramatic rise in prevalence of metabolic syndrome (Met3) among children and adolescents, and that Met3 is associated with cognitive and brain impairments among adults, no data on the impact of MetS on the brain exist in children.

WHAT THIS STUDY ADDS: It provides the first data on the impact of MetS on brain in adolescence. We show reductions in cognitive function and brain structural integrity in nondiabetic adolescents with MetS, thus suggesting that even pre-clinical metabolic illness may give rise to brain complications.

abstract

BACKGROUND: The prevalence of metabolic syndrome (MetS) parallels the rise in childhood obesity. MetS is associated with neurocognitive impairments in adults, but this is thought to be a long-term effect of poor metabolism. It would be important to ascertain whether these brain complications are also present among adolescents with MetS, a group without clinically manifest vascular disease and relatively short duration of poor metabolism.

METHODS: Forty-nine adolescents with and 62 without MetS, matched on age, socioeconomic status, school grade, gender, and ethnicity, received endocrine, MRI, and neuropsychological evaluations.

RESULTS: Adolescents with MetS showed significantly lower arithmetic, spelling, attention, and mental flexibility and a trend for lower overall intelligence. They also had, in a MetS-dose-related fashion, smaller hippocampal volumes, increased brain cerebrospinal fluid, and reductions of microstructural integrity in major white matter tracts.

CONCLUSIONS: We document lower cognitive performance and reductions in brain structural integrity among adolescents with MetS, thus suggesting that even relatively short-term impairments in metabolism, in the absence of clinically manifest vascular disease, may give rise to brain complications. In view of these alarming results, it is plausible that obesity-associated metabolic disease, short of type 2 diabetes mellitus, may be mechanistically linked to lower the academic and professional potential of adolescents. Although obesity may not be enough to stir clinicians or even parents into action, these results in adolescents strongly argue for an early and comprehensive intervention. We propose that brain function be introduced among the parameters that need to be evaluated when considering early treatment of childhood obesity. *Pediatrics* 2012;130:1–9

The Brain Under Stress:

Translation

Hippocampus *INCREASES* in size with:

- •Regular exercise
- Intense learning
- Anti-depressant treatment

Exercise training increases size of hippocampus and improves memory

Kirk I. Erickson^a, Michelle W. Voss^{b.c}, Ruchika Shaurya Prakash^d, Chandramallika Basak^a, Amanda Szabo^f, Laura Chaddock^{b.c}, Jennifer S. Kim^b, Susie Heo^{b.c}, Heloisa Alves^{b.c}, Siobhan M. White^f, Thomas R. Wojcicki^f, Emily Mailey^f, Victoria J. Vieira^f, Stephen A. Martin^f, Brandt D. Pence^f, Jeffrey A. Woods^f, Edward McAuley^{b.f}, and Arthur F. Kramer^{b.c.1}

Mitochondria in muscle: fragmentation with inactivity

Summary: Stress — Good and Bad Ja in Synantic Eunction, Adaptive Plasticity and Damage

Role in Synaptic Function, Adaptive Plasticity and Damage

Adrenal steroids and excitatory amino acids modulate both limbs of inverted U

***Chronic stress: how much protection vs. destabilization?

Stress causes neurons to shrink or grow

....but not necessarily to die

Control

Chronic stress

Prefrontal Cortex And Hippocampus

OFC

Brain Under Stress:

Role in cognitive function, emotion, neuroendocrine and autonomic regulation

Chronic stress –dendritic expansion

Acute stress – spine formation

Increased anxiety

S. Chattarji lab

Amygdala

Emotion, fear, anxiety,

Aggression

Turns on HPA and autonomic response

Overactivity in anxiety disorders and depression

Brain Under Stress:

Role in cognitive function, emotion, neuroendocrine and autonomic regulation

Chronic stress -dendritic expansion

Acute stress – spine formation

Increased anxiety

S. Chattarji lab

Independent of Glucocorticoids, which Block stress effect

Amygdala

Emotion, fear, anxiety,

Aggression

Turns on HPA and autonomic response

Overactivity in anxiety disorders and depression

Possible relevance to PTSD

Low CORT at time of trauma – increased PTSD

-Epidemiology (Yehuda, McFarlane, Shalev)

-Supplemental CORT reduces symptoms (Schelling)

-Animal models (Hagit Cohen and colleagues)

Brain Under Stress:

Role in cognitive function, emotion, neuroendocrine and autonomic regulation

Prefrontal cortex

Decision making, working memory,
Self regulatory behaviors: mood, impulses
Autonomic and HPA regulation

Control

mPFC

Chronic stress
Circadian disruption

Reversible in young adults.

Sensitive to circadian disruption

Loss of resilience with aging

Females respond differently

Collaboration with John Morrison, Patrick Hof

Social environment and healthPart 3: Biological Embedding and G x E

Reactive alleles

Epigenetic modifications – transgenerational

Types of Stress

Positive Stress

- Exhilaration from a challenge that has a satisfying outcome
- Sense of mastery and control
- Good self esteem

Tolerable Stress

- Adverse life events but good social and emotional support

Toxic Stress

- Exacerbated by chaos, abuse, neglect
- Poor social and emotional support
- Unhealthy brain architecture

Adverse Childhood Experience – Health Consequences

carried out in Kaiser-Permanente Health System in California

Table 1. Health and social problems and the ACE score

Problems from the baseline data	Outcomes associated with the ACE score
Prevalent diseases	Ischemic heart disease, cancer, chronic lung disease, skeletal fractures, sexually transmitted diseases, liver disease
Risk factors for common diseases/poor health	Smoking, alcohol abuse, promiscuity, obesity, illicit drug use, injection drug use, multiple somatic symptoms, poor self-rated health, high perceived risk of AIDS
Mental health	Depressive disorders, anxiety, hallucinations, panic reactions, sleep disturbances, memory disturbances, poor anger control

Sexual and reproductive health	Early age at first intercourse, sexual dissatisfaction, teen pregnancy, unintended pregnancy, teen paternity, fetal death
General health and social problems	High perceived stress, impaired job performance, relationship problems, marriage to an alcoholic, risk of perpetrating or being a victim of domestic violence, premature mortality in family members

Heart disease, smoking, obesity

Drug abuse, high risk for AIDS

Depression, anxiety, anger control

Anti-social behavior

Nature-Nurture Interactions

Monoamine oxidase genes influence whether childhood abuse will be transmitted from abuser to child

Caspi, A.; McClay, J.; Moffitt, T. E.; Mill, J.; Martin, J.; Craig, I. W.; Taylor, A., and Poulton, R.
Role of genotype in the cycle of violence in maltreated children.
Science. 2002; 297:851-854.

Serotonin transporter genes influence vulnerability to life-stress in causing depression

Caspi, A.; Sugden, K.; Moffitt, T. E.; Taylor, A.; Craig, I. W.; Harrington, H.; McClay, J.; Mill, J.;

Martin, J.; Braithwaite, A., and Poulton, R.

Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene.

Science. 2003; 301:386-389.

EpigeneticsBiological Embedding

"above the genome"

Refers to the gene-environment interactions that bring about the phenotype of an individual.

- Modifications of histones unfolding/folding of chromatin to expose or hide genes
- Binding of transcription regulators to DNA response elements on genes
- Methylation of cytosine bases in DNA without changing genetic code
- MicroRNA's regulate mRNA survival and translation

Effects can extend to next generation

Examples: obesity; parental behavior http://www.pbs.org/wgbh/nova/sciencenow/3411/02.html

Orchids and Dandelions

Genes that appear to be "bad" may confer positive outcomes in a nurturing environment

Development and Psychopathology 17 (2005), 271–301 Copyright © 2005 Cambridge University Press Printed in the United States of America DOI: 10 1017/S0954579405050145

Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity

W. THOMAS BOYCE^a AND BRUCE J. ELLIS^b

"University of California, Berkeley; and bUniversity of Arizona

Question: Are "orchids" not only more vulnerable to adversity but also more adaptable?

Some examples of ACE and low SES effects on the brain

- 1. Lack of verbal stimulation ("serve and return") leading to poor vocabulary as well as impaired emotional control.
- 2. Chaos in home impaired self regulation; risk for hypertension and obesity
- 3. Low SES environment impaired cognitive functions involving <u>prefrontal cortex</u> and <u>hippocampus</u>.
- 4. Children of depressed mothers have larger amygdala.
- 5. Low self esteem and locus of control <u>smaller hippocampus</u> and impaired regulation of cortisol; increased risk for PTSD.

Diverse mechanisms of glucocorticoid action:

Non-genomic and genomic effects of glucocorticoids

Non-nuclear glucocorticoid receptors: association with PSD

Fig. 3. GR immunolabeling of the PSD. (A) GR-ir labeling of the PSD (arrowheads) of an asymmetrical synapse located on the head of a LA spine (sp). GR-ir spine organelies are also present in the spine head (asterisk). (B) A presynaptic terminal simultaneously forms two asymmetric synapses onto spines (arrows): One spine is GR-ir labeled (isp) at the PSD while the other spine PSD (upper spine) is unlabeled (uisp). A labeled spine organelle (asterisks) is also present in the isp. (C, D) Enlargement for comparison of GR-ir labeled and unlabeled PSD's shown in B. (C) Unlabeled PSD shown In B. (D) GR-Ir PSD shown in B. Scale bar -(A) 500 nm (B) 200 nm (C, D) 50 nm.

293

Glucocorticoid actions <u>mediate</u> or <u>biphasically modulate</u> actions of chronic stress – 3 examples

- Cocaine amphetamine related transcript (CART) mRNA and protein in dentate gyrus.

Function: RESISTANCE TO STRESSOR

CORT mediates stress-induced increase in CART

- KA1 receptor mRNA in dentate gyrus.

Function: PROMOTES GLUTAMATE RELEASE AND ACTIONS

CORT biphasically modulates stress-induced increase in KA1

- Glutamate transporter (Glt 1) mRNA and protein in CA1-3
Function: REUPTAKE OF GLUTAMATE AFTER RELEASE

CORT biphasically modulates stress-induced increase in Glt1

What these stories have begun to teach us

Glucocorticoid actions involve multiple mechanisms from the epigenome to rapid signaling and participate in many aspects of adaptive plasticity.

Structural plasticity is NOT necessarily DAMAGE and is reversible up to a point...... but that changes with age.

Stress effects involve more than glucocorticoids including molecules such as excitatory amino acids, CRF, BDNF, tPA, lipocalin-2 and endocannabinoids.

What does this say about therapies?

Glucocorticoid actions involve multiple mechanisms from the epigenome to rapid signaling and participate in many aspects of adaptive plasticity.

Structural plasticity is NOT necessarily DAMAGE and is reversible up to a point...... but that changes with age.

Stress effects involve more than glucocorticoids including molecules such as excitatory amino acids, CRF, BDNF, tPA, lipocalin-2 and endocannabinoids.

Given the interacting nature of mediators and importance of behavior for plasticity, what strategies are best for stress-related disorders?

What to do? Top-down therapies

Interventions - evidence that they change brain structure and function

Regular physical activity

Increased hippocampal volume and PFC blood flow and improved executive function and memory

Cognitive-behavioral therapy

Reducing anxiety decreases amygdala volume

Social support and integration

Experience Corps for elderly volunteers Improved executive function, PFC blood flow and overall health

Pharmaceutical agents as adjuncts to top down interventions and facilitators of change

What are the limits of brain plasticity?

The Antidepressant Fluoxetine Restores Plasticity in the Adult Visual Cortex

José Fernando Maya Vetencourt, et al. Science **320**, 385 (2008);

Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial

François Chollet, Jean Tardy, Jean-François Albucher, Claire Thalamas, Emilie Berard, Catherine Lamy, Yannick Bejot, Sandrine Deltour, Assia Jaillard, Philippe Niclot, Benoit Guillon, Thierry Moulin, Philippe Marque, Jérémie Pariente, Catherine Arnaud, Isabelle Loubinoux

Facilitators of plasticity

Targeted behavior interventions

Corticosterone in drinking water mimics food restriction and fluoxetine treatment

ARTICLE

Received 12 Jan 2011 | Accepted 19 Apr 2011 | Published 17 May 2011

DOI: 10.1038/ncomms1323

Food restriction enhances visual cortex plasticity in adulthood

Maria Spolidoro¹, Laura Baroncelli¹, Elena Putignano², José Fernando Maya-Vetencourt², Alessandro Viegi² & Lamberto Maffei¹

Neural circuits display a heightened sensitivity to external stimuli during well-established windows in early postnatal life. After the end of these critical periods, brain plasticity dramatically wanes. The visual system is one of the paradigmatic models for studying experience-dependent plasticity. Here we show that food restriction can be used as a strategy to restore plasticity in the adult visual cortex of rats. A short period of food restriction in adulthood is able both to reinstate ocular dominance plasticity and promote recovery from amblyopia. These effects are accompanied by a reduction of intracortical inhibition without modulation of brain-derived neurotrophic factor expression or extracellular matrix structure. Our results suggest that food restriction could be investigated as a potential way of modulating plasticity.

Diverse mechanisms of glucocorticoid action:

Non-genomic and genomic effects of glucocorticoids

Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo

Conor Listona,b,1 and Wen-Biao Gana,1

*Molecular Neurobiology Program, Skirball Institute, Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016; and *Department of Psychiatry, Weill Comell Medical College, New York, NY 10021

Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved August 12, 2011 (received for review July 1, 2011)

Spine formed over 24h

- Time course hours
- Dexamethasone reduces spine turnover;
- CORT restores
- MR spine formation and elimination
- GR spine formation

Higher CORT promotes elimination over formation

In adults as well as in young

All accessible cortical regions

Spine lost over 24h

Looking to the Future

The adult brain shows plasticity and we are only beginning to recognize its potential!

Dendrites
Shrink and expand

Synapses
Disappear and are replaced

Neurogenesis
Continues in some brain areas

Conclusion: Social environment, brain, body and health Non-linearity and biphasic actions

Biphasic effects and non-linearity –interactions of multiple mediators

Protection and damage by mediators of adaptation: cumulative change (allostatic load/overload)

Brain is a target and changes in brain architecture alter physiology and behavior

Powerful effects of social as well as physical environment

Biological embedding – early life; epigenetics; orchids and dandelions

Importance of "top down" interventions

Potential of brain plasticity

Breaking down silos of knowledge and practice!

Many colleagues to acknowledge!

Recent and Current Colleagues and Collaborators

- Keith Akama
- Karen Bulloch
- Matt Hill
- Jason Gray
- Richard Hunter
- Ilia Karatsoreos
- Conor Liston
- Ana Maria Magarinos
- Melinda Miller
- Carla Nasca
- Gus Pavlides
- Kara Pham
- Jason Radley
- Rebecca Shansky
- Joanna Spencer-Segal
- Sid Strickland
- Elizabeth Waters

- B.J. Casey, Weill/Cornell
- Sumantra Chattarji, Bangalore and MIT
- Patrick Hof, Mt Sinai
- Joseph Ledoux, NYU
- Teresa Milner, Weill/Cornell
- John Morrison, Mt Sinai
- Teresa Seeman, UCLA

And to former students, postdoctoral fellows

and colleagues who have contributed so much

to this story!!!

MacArthur Research Network on Socioeconomic Status and Health

National Scientific Council on the Developing Child

Support from NIA, NIMH and NINDS