Radiation induced bystander effects
adaptive responses and low dose risk

Carmel Mothersill and Colin Seymour
Medical Physics and Applied Radiation Sciences
McMaster University,
Hamilton, Ontario
Canada
Outline

- Background on the bystander effect
- Phenomenology
- Mechanisms
- Implications for radiation protection
- Implications for therapy
- Data gaps and future approaches
Bystander Effect

- Communicated damage
  - Non-linear dose response
  - History - Clastogenic factors
  - Laboratory methods
    - Targeted irradiation
    - Medium transfer
  - Search for the “effector”
Bystander effects - What responses are seen?

- Apoptosis and other forms of cell death
- Induction of early response proteins
- Oxidative stress
- Proliferation
- Genomic instability
- Cytogenetic effects
- Transformation
Medium transfer bioassay

- Cell cultures seeded with a large number of cells are exposed to radiation
- After 1 hr the culture medium is harvested and filtered to remove debris
- The medium is then transferred to unirradiated reporter cells seeded at cloning density
- Samples of medium are reserved for calcium and serotonin assay

Can be applied to tissues or whole animals using explant technique
Bystander and direct dose survival curves over six orders of magnitude $^{60}$Co
Direct vs bystander effect

![Graph showing % clonogenic cell death vs radiation dose (Gy). The x-axis represents radiation doses ranging from 0 to 5 Gy, and the y-axis represents % clonogenic cell death ranging from 0 to 100. The graph includes bars with different colors and patterns indicating initial direct (open) and initial bystander (filled) effects.]
Issues in relation to the central role of DNA damage in radiobiology - possible conflicts?

- Effects in cells which were never hit but received signals from hit cells
- No increase in effect with increasing dose, the lowest possible high LET “dose” to a population-1 track to one cell or a very low acute low LET dose (3mGy) -turns on the population effect
- P53 status of the cells not critical therefore the pathway characteristic of DNA damage response may be circumvented in this situation
Factors suggesting a major involvement of DNA direct damage in producing bystander effects

- Genetic factors are involved in the signaling and response pathways
- DNA repair deficient cells have very toxic responses to bystander signals
- Bystander mechanisms seem to drive genomic instability
Different bystander effects depending on repair ability
Factors not supporting a direct DNA damage involvement

- Lack of a classical dose response
- Induction of large effects in the mGy region
- Negative effect of dose fractionation
- No clear effect of neutron irradiation
- Evidence for effects following EM field exposure
Bystander effects - How are they expressed?

- Initial mechanism similar to a stress response [ROS elevated]
- Long-term perpetuation appears to involve genomic instability type mechanisms
- Final outcome determined mainly by genetic make-up and life-style factors
What is the signal?

- Nature of the signal is unknown

- Destroyed by repeated freeze thaw cycles and destroyed by heating, appears to have a very small size (<400 daltons).
Transduction of the response

The initial cellular response to the signal in human keratinocytes

- Induction of 2 min calcium flux within in 10 sec of receiving ICCM
- Longterm (greater than 6 hrs) induction of mitochondrial membrane potential collapse and induction of downstream apoptosis steps
- Longterm induction of oxy-radical production
- p53 independent
Calcium pulse following addition of 0.5 Gy ICCM to cells

![Graph showing calcium pulse with time in minutes and Fluor 3/Fura Red levels, comparing 0 Gy and 0.5 Gy ICCM treatments.](image)
Calcium fluorescence following addition of ICCM to cells
Mitochondrial membrane depolarisation

0 Gy

0.005 Gy
% cells showing increased ROS following ICCM
Signal after exposure to ICCM from 0.005Gy irradiated cells
Bystander and direct dose survival curves over six orders of magnitude \(^{60}\)Co with calcium data
Calcium homeostasis hypothesis

- Calcium influx is the first response in the hit cells and in medium recipients
- Which channels? L channel blockers stop effect
- Serotonin, l-deprenyl and reserpine all effect calcium homeostasis and all modulate the effect
- Intracellular calcium homeostasis controlled in mitochondria - role of bcl-2?
Table 1: Peak Fluo 3 /Fura Red ratio value in cultures exposed to 0 Gy ICCM or 0.5 Gy ICCM in the presence of inhibitors of calcium and ROS. An increase in ratio value indicates an increase in calcium. * p<0.01, ** p<0.005

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>0 Gy ICCM</th>
<th>0.5 Gy ICCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>No inhibitor</td>
<td>0.54 ± 0.01</td>
<td>1.17 ± 0.02</td>
</tr>
<tr>
<td>EGTA</td>
<td>0.45 ± 0.02</td>
<td>0.46 ± 0.01</td>
</tr>
<tr>
<td>Verapamil</td>
<td>0.47 ± 0.02</td>
<td>0.46 ± 0.03</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>0.50 ± 0.03</td>
<td>0.49 ± 0.04</td>
</tr>
<tr>
<td>Thapsigargin</td>
<td>0.47 ± 0.01</td>
<td>0.72 ± 0.02</td>
</tr>
<tr>
<td>SOD</td>
<td>0.55 ± 0.01</td>
<td>0.51 ± 0.01</td>
</tr>
<tr>
<td>Catalase</td>
<td>0.54 ± 0.01</td>
<td>0.55 ± 0.01</td>
</tr>
</tbody>
</table>
Bystander effect of 5HT with 0.5Gy
Bystander effect of reserpine and 0.5Gy
Cell colonies pretreated with reserpine

Control
Bystander medium

+10nM Reserpine
Serotonin depletion following irradiation, and the bystander effect

$r^2 = 0.76$
Calcium flux induced in HPV-G cells by 8 micromolar 5HT
Effect of 5HT 3 receptor inhibitors Zofran and Kitryl,

![Graph showing % of control survival for different drug treatments.](image)
The bystander effect

Ionizing radiation

GJIC connexins

$\text{Ca}^{2+}$

$1^\circ$ and $2^\circ$ response

Bystander factor molecules

ROS/Nitric oxide/cytokines

Biogenic amines

???

Amplification/

Cascade effects?

Receptors?

$\text{Ca}^{2+}$

$5HT$
Is the effect relevant in vivo??

- Evidence from fresh human tissue irradiated ex vivo
- Evidence from Mice irradiated in vivo to low total body doses
- Evidence from bloods taken from radiotherapy patients showing variation during therapy
- Fish model
Methods for detecting signals in tissues

- Media harvest from exposed explants or whole tissues
- Detection of signals using reporter cells which are exposed only to media from exposed samples
- Endpoints include growth, apoptosis, protein expression, calcium fluxes and mitochondrial responses
Measuring bystander response *in vitro or in vivo*

Fresh tissue/organism

Explant pieces

Culture and irradiation of explants - assay material

Harvest culture medium

Add to unirradiated clonogenic cell line and determine SF
Human data

- 300 normal human urothelial samples show wide variation between subjects
- 50 samples from benign prostate where blood samples from the same patient were available show correlation between response of both tissues
- Data for radiotherapy patients’ blood showing changes in bystander effect during therapy
- New data from nephrectomy patients show normal tissue signals following ex vivo irradiation but none from tumour cells
Explant technique

Original tissue explant with cells stained in situ
Mouse data

- Bladders taken from mice given 0.5 Gy TBI or irradiation to bladder explants ex vivo.
- CBA/Ca strain is radiation resistant, C57Bl/6 is radiosensitive
- Apoptotic cascade induced in cells exposed to signals from the sensitive mice only
Calcium ratios in control and 0.5Gy TBI CBA/Ca and C57BL/6 mice

Medium from unirradiated tissues from both strains

CBA/Ca

C57BL/6
Real time calcium flux for Control and CBA/Ca mice (A) and C57BL 6 0.5Gy TBI (B)
Mitochondrial membrane potential decrease in C57BL/6 0.5Gy TBI
Fish data

Truly truly in vivo!!!!!
What do bystander effects do to radiation protection?

- Dissociate
  - Dose from effect
  - Effect from harm
  - Harm from risk

- Enables the concept of a “zone of uncertainty” where outcome can be assessed relative to the context in which the dose is delivered
So Bystander effects are BAD?

- Nothing is black and white!
- Our reporter assay responds by inducing cell death
- Genetic background predetermines response options
- Lifestyle factors such as smoking decrease apoptosis following exposure to bystander signals
- Magnitude of dose is not as important as response to dose
- Bystander factors following chronic or repeated exposures appear to be very complex

Bottom line: effect does not equate with harm
Link to adaptive response

- Low dose hypersensitivity and bystander effects are mutually exclusive [published data for 13 cell lines)
- Adaptive response appears to sector with bystander effect -ie get a bystander effect get an adaptive response (4 cell lines tested so far)
- Pre-treatment of cells with bystander medium induces resistance to an actual dose.
- Bcl-2 induction appears to be the key.
Therapeutic possibilities

- Harness the effect to sensitise tumours or to collapse supporting tissue?
- Use the assay for predictive testing?
- Integrate the bystander biology into treatment planning?
- Therapy for non-malignant conditions?
Proposed dose response relationship for radiation-induced effects

Yellow arrows indicate mechanistic break points where new, more appropriate, response pathways emerge.

Yellow arrows indicate mechanistic break points where new, more appropriate, response pathways emerge.

New “coping” mechanism

tolerance

saturation

Zone of “linearity”
Possible model for expression of bystander effects in biota
With intervention points for protective/therapeutic strategies

Targeted cell

No signal

Ca$^{2+}$

Radiation or other environmental stressor

SHT

Genotype and environment dependent

1

Recipient cell

Ca$^{2+}$

signal

Genotype and environment dependent

1-4 = potential intervention points

Anti-apoptotic proteins

pro-apoptotic proteins

3

ROS

4

Chance of Life ± mutation

Genomic instability phenotype

Chance of death

Apoptosis phenotype
Data Gaps

- Information about the mechanisms involved in SIGNAL GENERATION
- What determines RESPONSE CHOICE
- Relevance to low dose RISK
- MULTIPLE STRESSOR relevance
Acknowledgements

In Ireland
Dr Fiona Lyng
Ms Paula Maguire

And in Canada
Dr Richard Smith
Ms Carol Bucking
Dr Michael Kilemade
Ms Alicia O’Neill
Dr Jennifer Lemon

Medical collaborators:
In Ireland
Dr Michael Moriarty
Dr Kiaran O’Malley
Mr John Harney

In Canada
Mr Anil Kapoor,
Dr Aubrey Gilles,
Dr Gurmit Singh

This work was supported in ~Ireland by the SFI, CEC, contract number FIGH-CT1999-00003 and the Irish CRAB and in Canada by the CRC Chair Programme and the NSERC discovery grant programme