Hormesis: A Polynomial Fit Analysis

David Newlin, Georgiy Bobashev, Phillip Regalia, and Edward Calabrese

RTI International
Catholic University of America
University of Massachusetts - Amherst

Theme

"The broad generality of hormesis implies it is a characteristic of organisms rather than of the agents—such as toxic compounds or abused drugs—that perturb them."

Two Polynomial Analyses

Dose Hormesis:

NCI Yeast Cancer screen dataset (polynomial curve fitting)

Temporal Hormesis:

i.v. Cocaine – substance abusers

i.v. Nicotine – smokers & nonsmokers (ANOVA w/ polynomial contrasts)

NCI Yeast Dataset

Calabrese, Staudenmayer, Stanek, and Hoffmann, Toxicological Sciences, 94(2), 2006

Growth inhibition (optical densities)

2189 putative toxic compounds

5 doses (plus control)

13 yeast strains

yields 28,457 dose-response curves

NCI Yeast Screening Design

Research Questions:

- Is polynomial analysis useful for describing hormetic dose-response functions?
- Are there specific parameters that identify hormesis characteristics?
- Do the data support the hormesis model in this NCI dataset?

Quadratic Theoretical Functions

- Response=A+BX+CX²
 (A-Response)+BX+CX² = 0
- Determinant = B²-4(A-Response)C
- Number of solutions depends on whether Determinant >,=, or < than 0
- U-shape or inverse U depends on the sign of C

Determinant positive Coefficient C negative

Determinant negative Coefficient C negative

Determinant negative Coefficient C negative

Determinant positive Coefficient C positive

Summary of Quadratic Shapes

		Determinant	
		> 0	< 0
Coefficient C	C > 0	possible hormesis	rare case
	C < 0	hormesis	inverted "U"

Individual or Averaged Curves?

- 28457 individual response curves (already averaged over 2 measurements)
- 2189 compounds, 13 strains
- Most of the variation is between the compounds, not between the strains
- Distributions of fitted parameters averaged over strains are similar to the distributions of the parameters of the individual curves.

Individual or Average Curves?

Histograms of the Determinants and Quadratic Coefficients

Raw Responses

Determinant

Quadratic
Coefficient C

Averaged across Strains

Determinant

Quadratic
Coefficient C

Averaged across Compounds

Determinant

Quadratic
Coefficient C

All 2189 compounds (averaged across yeast strains)

Quadratic Fits for 1st 100 Compounds (averaged across yeast strains)

Example of Fitted and Raw Curves. Effect of Saturation

Compounds (averaged across yeast strains)

Two basic inhibition response shapes:

- 1. U-shaped
- 2. Inverted U-shaped (usually hormetic)

(or no response - flat)

Saturation effects can lead to wrongful fit (Inverted U vs. U)

Alternative Model Modified Sigmoid

Response = $(A+BX+CX^2)/(1+FX^2)$

Temporal Hormesis

i.v. Cocaine

- PET study of cocaine
- N=10 cocaine users
- •placebo, 20 mg, 40 mg
- 30 min recording

i.v. Nicotine

- PET study of nicotine
- N=9 smokers & nonsmokers
- placebo, .75 mg, 1.5 mg
- 26 min recording

Statistical Analyses

Repeated-measures Analysis of Variance (ANOVA)

Within-subject factors:

- Dose (placebo, low, high)
- Cardiovascular Measure (HR, RSA, THM)
- Time (polynomial trends)

i.v. Cocaine

i.v. Cocaine

i.v. Nicotine

Dose * Measure * Time polynomial cubic interaction

	Cocaine	Nicotine
	F(1,9) p	F(1,8) p
Lo - RSA	13.2 .005	6.1 .038
Lo - THM	14.2 .004	.04 ns
Hi - RSA	28.4 .0001	9.3 .016
Hi - THM	13.1 .006	2.2 ns

Summary

- it would be difficult to improve upon Calabrese et al. (2006)
- polynomial analysis appears appropriate for testing hormesis
 - both "dose" and "temporal" hormesis
- we hope that nonlinear sigmoid modeling will improve this further
 - particularly for dealing with saturation effects at very low and very high doses

Plausible Hypothetical Assumptions

- Hormetic (biphasic) drug response has both a psychostimulant and a psychosedative component.
- The psychostimulant component is recruited rapidly and is roughly linear with dose.
- The psychosedative component is recruited slowly and is exponentially related to dose.
- These two components are nonadditive.
- Do these assumptions "generate" dose-hormesis and temporal-hormesis?