# Risk, Uncertainty, Hormesis and Legislation

Colin Seymour
McMaster University
CANADA







#### What is Risk?

• The possibility of something bad happening



# So "Radiation risk" Presupposes something bad will happen



QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.



#### Collective dose

• The sum of the individual doses received in a given period by a population from exposure to a specified source of radiation



#### Fictional science



Inspiring Innovation and Discovery

#### So

- Risk as a concept cannot be good
- But risk  $\neq$  harm
- As radiation may have beneficial effects a new concept is needed [interaction probability???]



### Uncertainty

• Uncertain means "not known or fixed" or "not completely certain"



# Danger of psychological certainty

"It's not what we don't know that gets us into trouble but what we know that ain't so"

Mark Twain



#### What we don't know is a lot!

The universe is made up mostly of dark matter and dark energy and we don't know what either of them is



We don't know a lot about the mechanisms of low level radiation effects

And we know even less about the combination effects of radiation and chemicals



#### Within cells

The shear complexity of cells makes chaos theory attractive





#### Chaos

The sensitivity of the system is dependent on initial conditions

Some order can emerge through bifurcation points

As an example Ed acts as a strange attractor for hormesis and imposes some order on the field



# At low doses - what determines the radiation response?

• If initial system sensitivity is important, then the chemical reactions in the free radical field occur in femtoseconds. During a 1second irradiation 1X10<sup>14</sup> [an awfully big number] reactions could occur, and each reaction would change the state of the cell and theoretically allow a different response.



#### But!

• Suppose surrounding cells determine the response.....?

• And then there are feed-back loops......





#### The uncertainty of a hormetic response





#### The uncertainty of a hormetic response





n e a n

Can only occur when the outcome is variable

At high doses of anything, death is certain





### Legislation

• Society is built upon laws, either written [civil code] or through usage [common law]

The key issue is certainty



# Laws have an ethical component

BUT

Which ethical system should predominate

Individual rights?

Societal rights?



## For certainty, law needs

• Sine qua non

Causa causans

Both are issues of causation but at low doses ±environmental carcinogens, the issue is blurred

# The law needs proof of causation of damage

#### BUT

If for example, the role of insects in the ecosystem is unknown and the effect of low level carcinogens is not predictable, how can proof of damage be shown?



## Res Ipsa Loquitur

If there is a clear and compelling link between the damage and neighbourhood activities, the law may presume the link



# Law likes to be simplistic

An activity is wrong -

• or right



# The law should be easy to apply

The LNT model is easy to apply

• A hormetic model would be difficult



# Chernobyl example

- LNT model: All suffered harm, harm measured according to dose
- Hormetic model: More people benefited than were harmed [more people exposed to very low dose than high dose]
- So LNT Chernobyl bad
- Hormetic Chernobyl good



# Can people believe a hormetic model?

Difficulties in legislation-

Murder good if the right people are murdered



# Need a legislative framework

Is the best hope a threshold model that discards beneficial effects?



# Mechanistic problems

- Legally you must link cause to effect
- The law likes certainty!
- Therefore one issue is to enable the law to deal with biological uncertainty
- In legal terms you need the smoking gun, in biological terms the bullet may have been fired by your grandfather.



### The way forward?

• Can we change from a legal system based on certainty and precedent to one reflecting the reality of biological complexity and uncertainty?



