Predicting Low Dose Effects for Chemicals in High Through-Put Studies

Edward J. Stanek III and Edward Calabrese UMass-Amherst, USA

<u>Outline</u>

- 1. Introduction
- 2. The Example and Study Data
- 3. Testing Hypotheses about Low Dose Response
- 4. Estimating Response at Low Doses
- 5. Better Estimates: Predictors of Realized Random Effects
- 6. Conclusions

Introduction

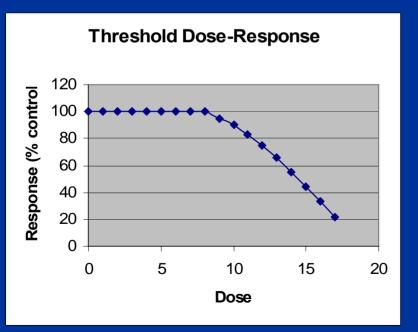
- High through-put studies common
- Can data be 'harvested'?
 - Cons: Ad-hoc, Post-hoc, Low Power, Bias, not significant
 - Pros: Low cost, Common in 'observational' studies, Can learn something

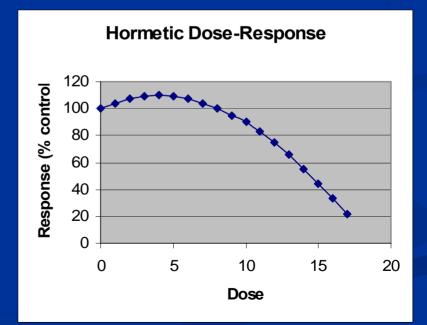
Illustrate use to assess response at low doses-

Focus: Statistical Models and Interpretation

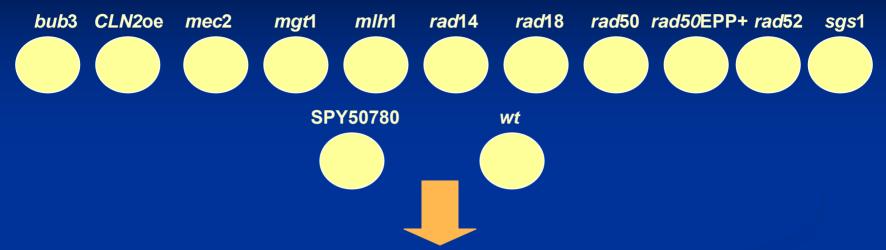
Example and Study Data

NCI Yeast data- 2189 chemicals, 13 yeast strains 5 doses x 2 replications-Focus on doses in Low Dose Region





NCI Methods 13 Yeast Strains

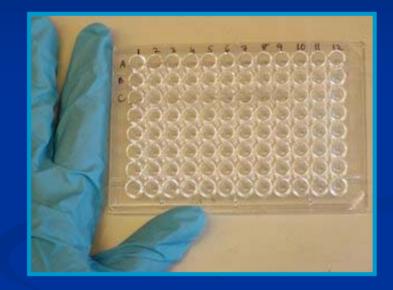


2,189 Anti-tumor Agents (1.2, 3.7, 11, 33 & 100 µM + Control)

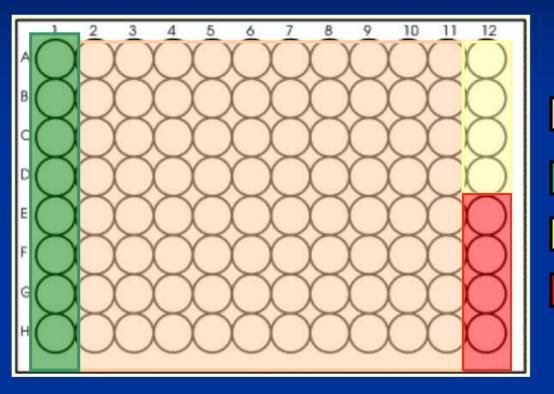
28,457 Replicated Dose-Response Experiments

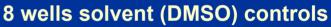
Methods: Cell Line

- Yeast cells in exponential growth inoculated onto microtiter plates
- 10⁴ cells/well with 200µl of medium
- 80 different anti-tumor agents added per plate
- Each plate run at one concentration (1.2, 3.7, 10, 33, or 100 μM)
- Each (of 5) conc. incubated over the same 12 hrs.
- Cell number measured with spectrophotometer (OD₆₀₀)



Methods: 96-well Plate



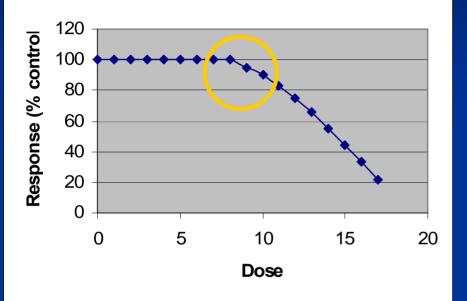


4 wells unexposed controls

Reported response is the growth of yeast in respective concentration relative to growth in solvent control

Where is the Low Dose Region?

Threshold Dose-Response



Hormetic Dose-Response

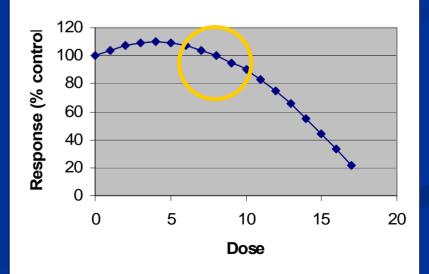
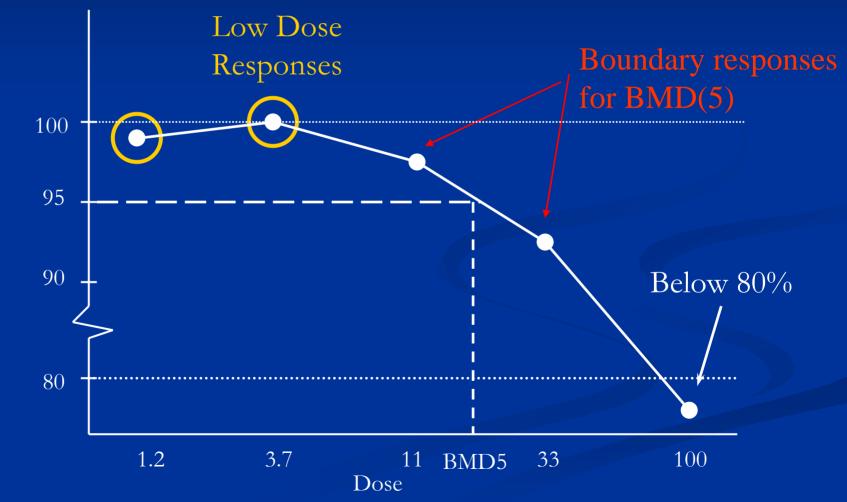
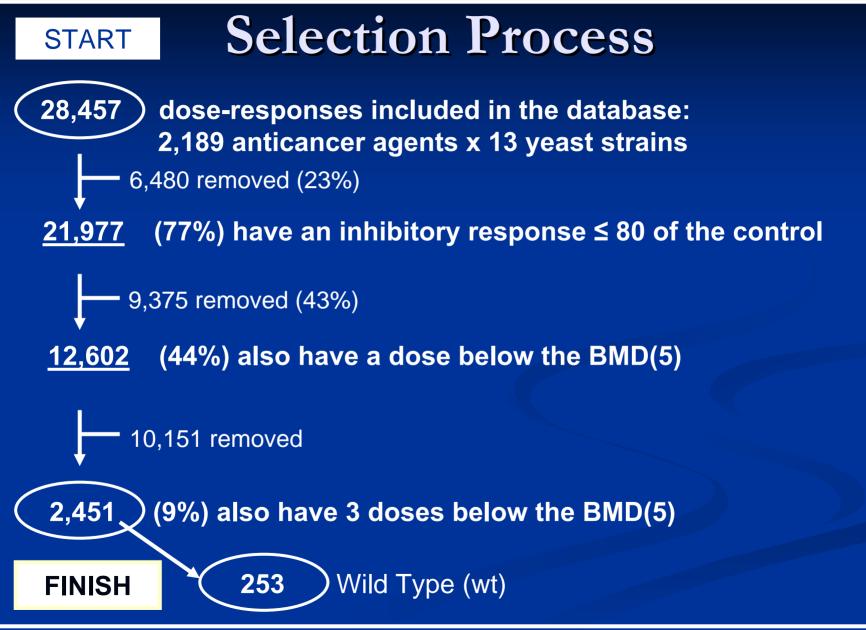


Figure 1. General Scheme Used for the Derivation of the BMD(5)



5/29/2009



5/29/2009

Example Data Wild Type- NSC#1928

Dose	Ave	Difference
	Response	
1.2	97	0
3.7	98	12
11	91	15

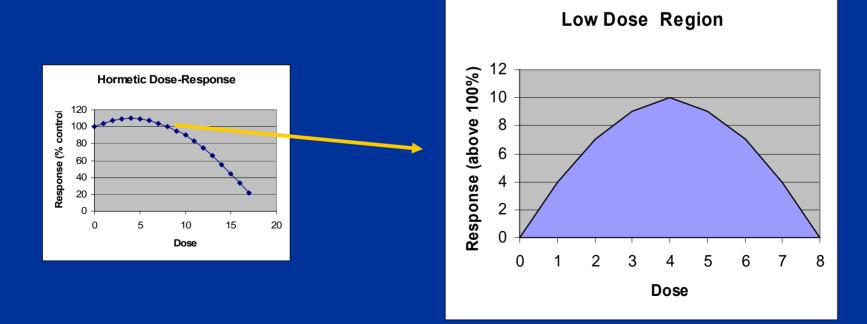
Example Data Wild Type- NSC#1928

Dose	Rep	Ave	Difference	Response
		Response		(% Diff
				from 100)
1.2	1	97	0	-3
1.2	2	97	0	-3
3.7	1	98	12	4
3.7	2	98	12	-8
11	1	91	15	-1.5
11	2	91	15	-16.5

How should we evaluate Response in

Low Dose Region?

Data: Selected Set of chemicals (n=253) b) For each chemical, 3 doses c) For each dose, replicate responses



Approach 1: Test a HypothesisApproach 2: Estimate 'True Response'

Need a statistical Model: Response

Chemical s is "NSC#1928"

Dose (t)	Rep (k)	Y _{stk}		
1	1	-3		
1	2	-3		
2	1	4		
2	2	-8		
3	1	-1.5		
3	2	-16.5		

What is 'True Response'? Expected Response Response

Dose (t)	Rep (k)	Y _{stk}	μ_{st}	
1	1	-3	μ_{s1}	
1	2	-3	μ_{s1}	
2	1	4	μ_{s2}	
2	2	-8	μ_{s2}	
3	1	-1.5	μ_{s3}	
3	2	-16.5	μ_{s3}	

$$Y_{stk} = \mu_{st} + E_{stk}$$
$$E_{R}(Y_{stk}) = \mu_{st}$$

True Response:

$$\mu_s = \frac{1}{m} \sum_{t=1}^m \mu_{st}$$

Model of Response for Chemical "s"

Chemical s = 1, ..., n<u>Dose</u> t = 1, ..., m

Dose t = 1,...,mReplication k = 1,...,r(=2)

where $Y_{stk} = \mu_{st} + E_{stk}$ = $\mu_s + \delta_{st} + E_{stk}$ 1 \sum_{stk}

$$\mu_s = \frac{1}{m} \sum_{t=1}^{n} \mu_{st}$$

Hypothesis Testing

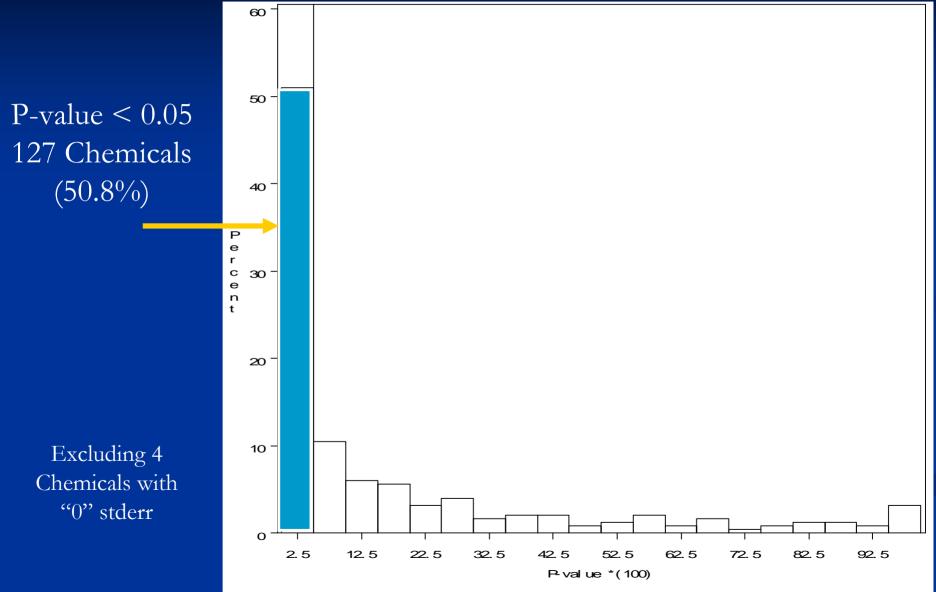
Model:
$$Y_{stk} = \mu_s + \delta_{st} + E_{stk}$$

Test the Null Hypothesis: $H_0: \mu_s = 0$ $H_A: \mu_s \neq 0$

"NSC#1928" $\hat{\mu}_s = -4.67$ $se(\hat{\mu}_s) = 3.20$

> t = -1.46 Decision: Fail to p - value = 0.241 reject H_0

Histogram of P-values for 249 Chemicals:



5/29/2009

Interpretation of Tests All 249 Chemicals Expected # Significant by Chance: 12 to 13

Observed 127 Significant: Mean Response

3 Negative

124 Positive

If 1 Sided test:

 $H_0: \mu_s \le 0$ $H_A: \mu_s > 0$

P-value < 0.05 146 Chemicals (58.6%)

Multiple Comparisons?

Preserve Type I Error:

Prob(False Rejection of H_0)

Change the critical value to $\alpha = \frac{0.05}{249} = 0.0002$

P-value < 0.0002 11 Chemicals (4.4%) Mean response: 0 Negative 11 Positive

Conclusions:

•Studies are not designed for low-dose range •Low power to evaluate response •If controlling for multiple comparisons, few chemicals reject null hypothesis (4.4%)•Data are not suitable to learn about response at low doses

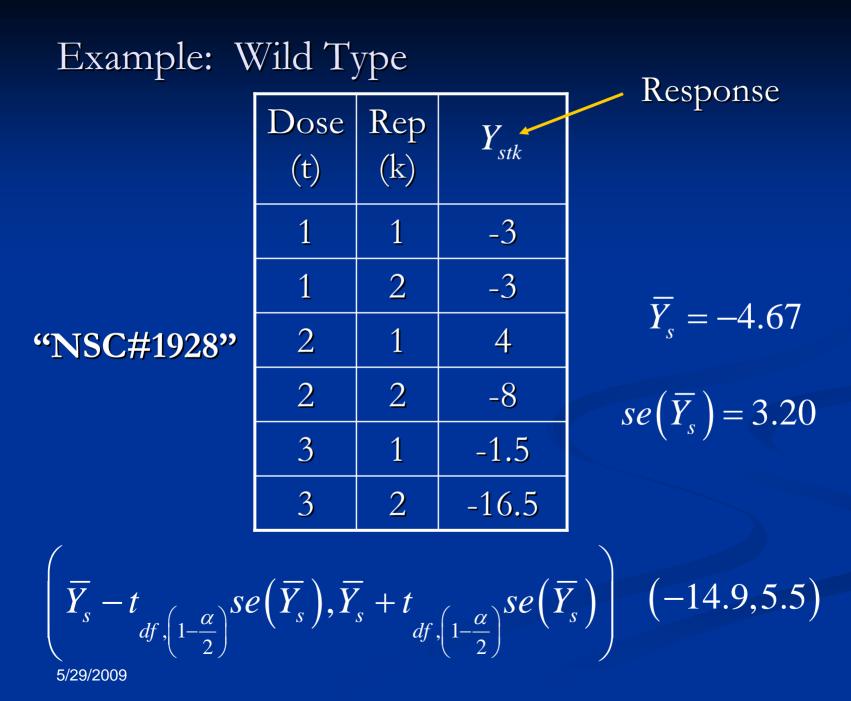
Approach 2: Estimate Response at Low Doses

Fit the model to chemical "s":

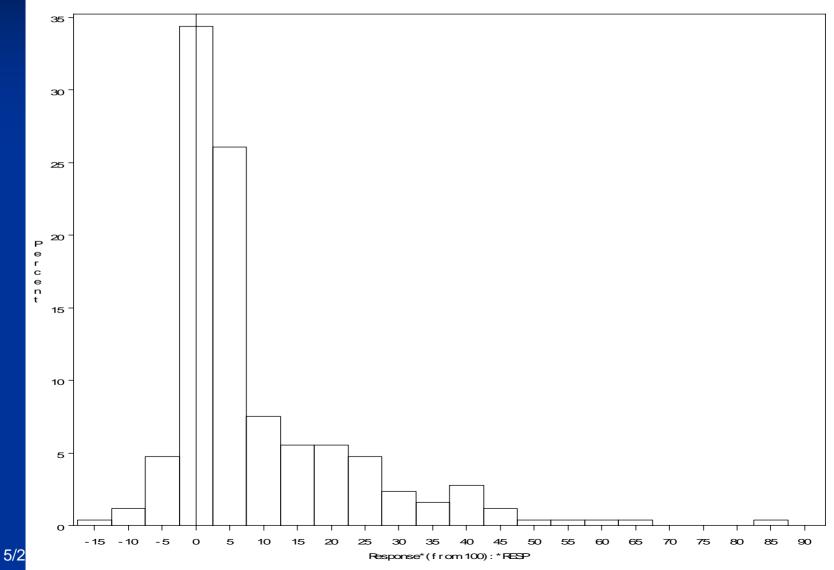
$$Y_{stk} = \mu_s + \delta_{st} + E_{stk}$$

Estimate μ_s Estimator $\overline{Y}_s = \frac{1}{m} \sum_{k=1}^m \left(\frac{1}{r} \sum_{k=1}^r Y_{stk} \right)$

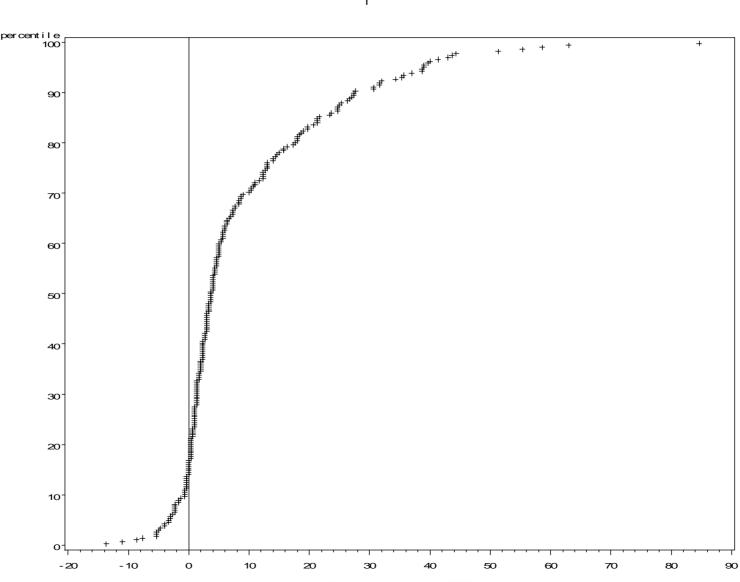
Estimate a 95% Confidence Interval for μ_s



Histogram of Estimates (n=253 chemicals)



Cumulative Distribution of Estimates (n=253 chemicals)



Response* (from 100): * RESP

5/29/2009

What about Control for Multiple Chemicals?

$$\left(\overline{Y_s} - t_{df,\left(1 - \frac{\alpha}{2}\right)} se(\overline{Y_s}), \overline{Y_s} + t_{df,\left(1 - \frac{\alpha}{2}\right)} se(\overline{Y_s})\right) \quad (-14.9 \quad , \quad 5.5)$$

Should we use $\alpha = \frac{0.05}{253} = 0.0002$

Using $t_{3,(0.0001)} = -22.2$ (-75.8, 66.4)

Conclusion: CI is so large, the estimate seems useless.

5/29/2009

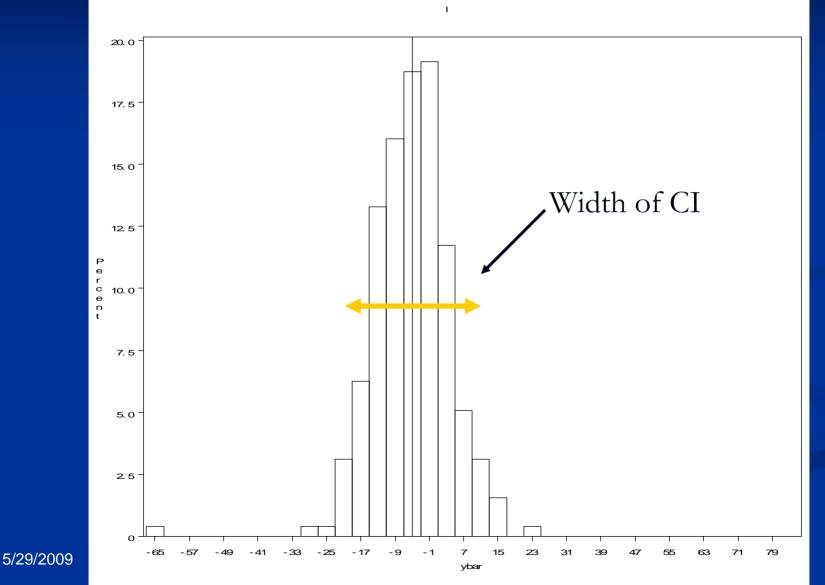
Review: What is a Confidence Interval?

 $\overline{Y_{c}}$

Assume $\mu_s = -5.0$ $se(\overline{Y}_s) = 8.0$

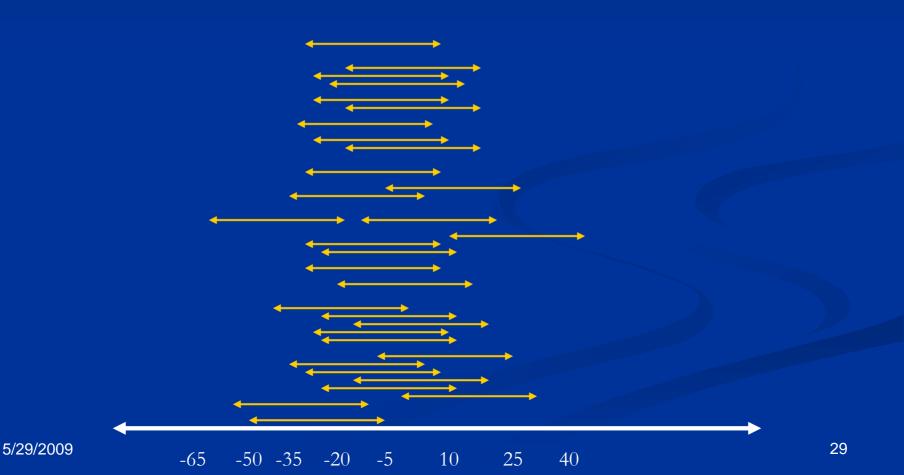
Suppose we repeat the study many times and summarize the Estimator

Distribution of Estimator

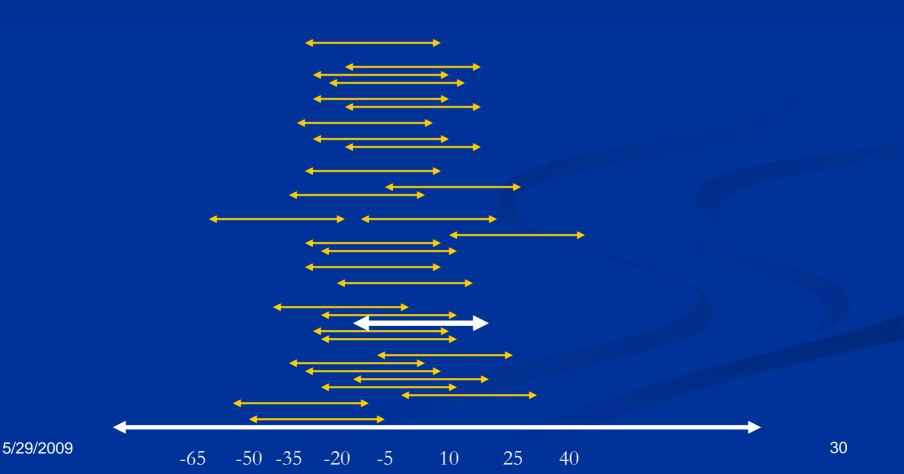


28

Distribution of CI Estimator



Observed Confidence Interval



Observed Confidence Interval

10

25

40

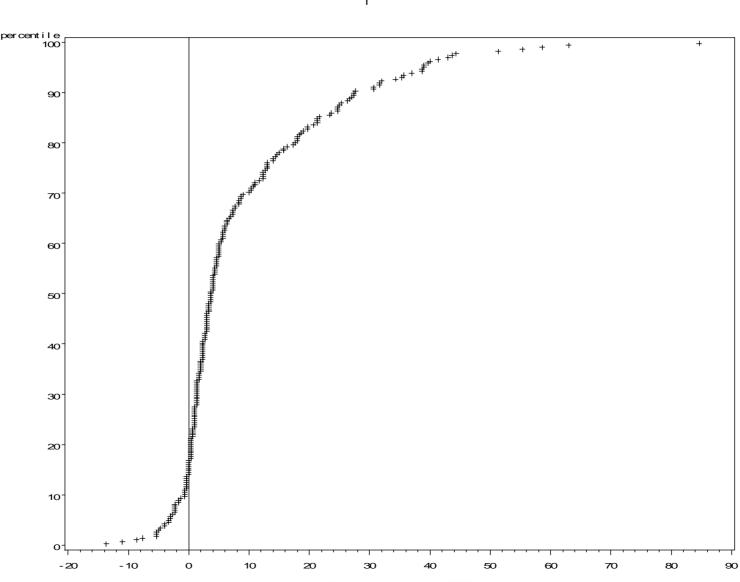
-65 -50 -35 -20 -5

31

Conclusion:

- Confidence Intervals indicate the 'central' width of the distribution of the Estimator
- The 'width' doesn't change when Estimating different chemicals
- No adjustment for the length of confidence intervals is needed.
- Different from Hypothesis testing.

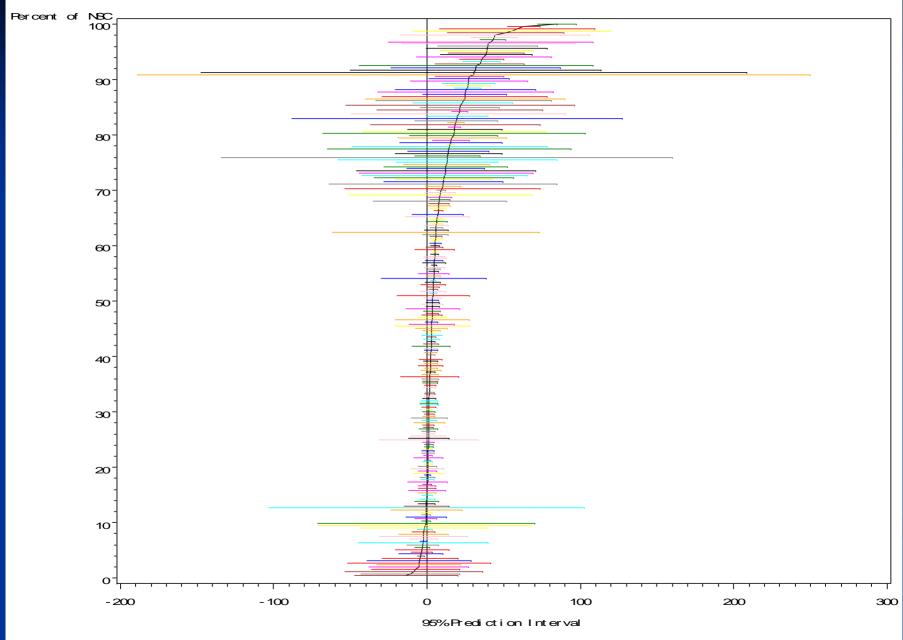
Cumulative Distribution of Estimates (n=253 chemicals)



Response* (from 100): * RESP

5/29/2009

Wild Type: Confidence Intervals by Chemical with 3 Doses below BMD(5)(n=253)



hnees09p07. sas 4/26/2009 by EJS

What would we expect if Threshold Model was the True Model?

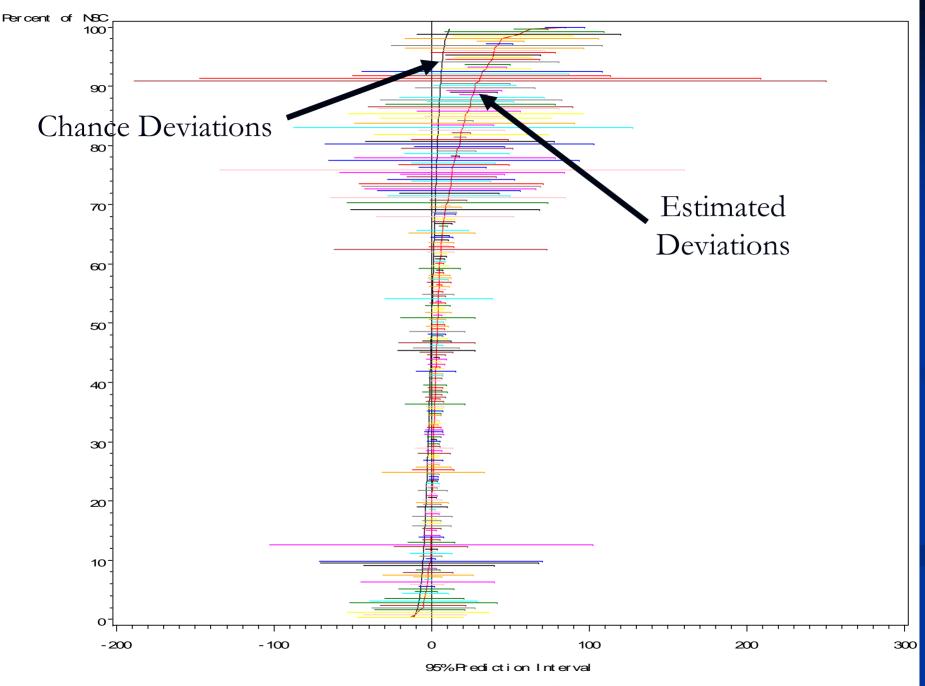
Pool Estimates of the Response Error Variance across Chemicals

 $\hat{\sigma}_{e} = 10.49$

Use the estimate to estimate the standard error of the estimator

$$se(\overline{Y}) = \frac{\hat{\sigma}_e}{\sqrt{n}} = 4.28$$

Wild Type: Confidence Intervals by Chemical with 3 Doses below BMD(5)(n = 253)



hnes09007. sas 4/26/2009 by EJS

Can we improve the estimates?

Account for higher Response Error at extremes.
Improve Accuracy of estimates-

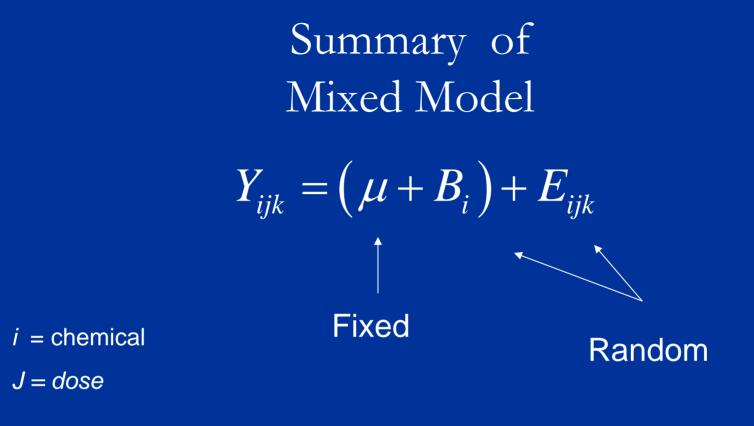
YES:

 Motivate Estimator by Considering Study Chemicals to have arisen from a sample

Mixed model

Model of Response for Chemical "s" Chemical s = 1, ..., n $Y_{stk} = \mu_{st} + E_{stk}$ t = 1, ..., mDose Replication k = 1, ..., r(=2) $=\mu_{s}+\delta_{st}+E_{stk}$ Define a Population of $s=1,\ldots,N$ Chemicals Mean for Chemical "s" Define Mean $\mu = \sum \mu_s$ for Population $Y_{stk} = (\mu + \beta_s) + \delta_{st} + E_{stk}$

Consider Study Chemicals as a sample Population of Chemicals s = 1, ..., Ni = 1, ..., nSample of Chemicals $Y_{stk} = (\mu + \beta_s) + \delta_{st} + E_{stk}$ For Chemical "s" For the i^{th} Selected $Y_{itk} = \left(\mu + B_i\right) + D_{it} + E_{itk}$ Chemical Fixed Effects Random Effects



k = *replication*

Best Linear Unbiased Predictor (BLUP) from Mixed Model

 $|\mu + B_i|$

Latent Response of ith Selected Chemical

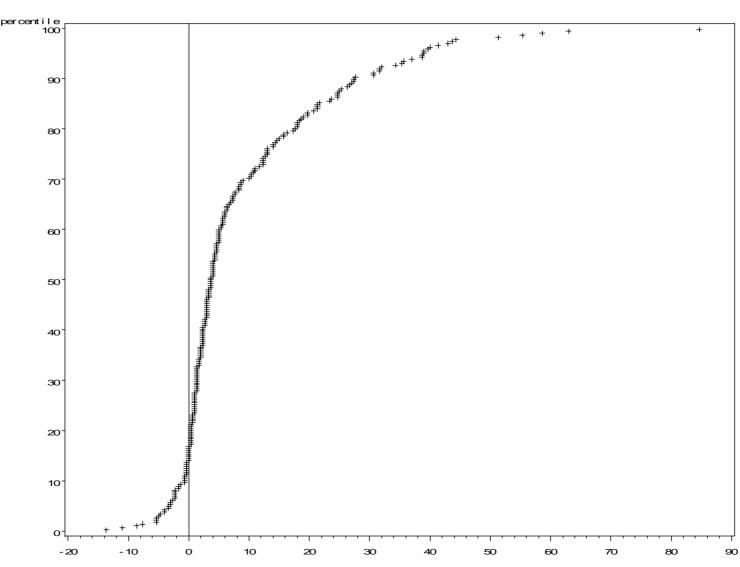
Predictor

Shrinkage Constant

$$\hat{P}_{i} = \hat{\mu} + k\left(\overline{Y_{i}} - \hat{\mu}\right)$$

$$k = \frac{\sigma^2}{\sigma^2 + \sigma_e^2 / m}$$

Cumulative Distribution of Simple Mean (n=253 chemicals)

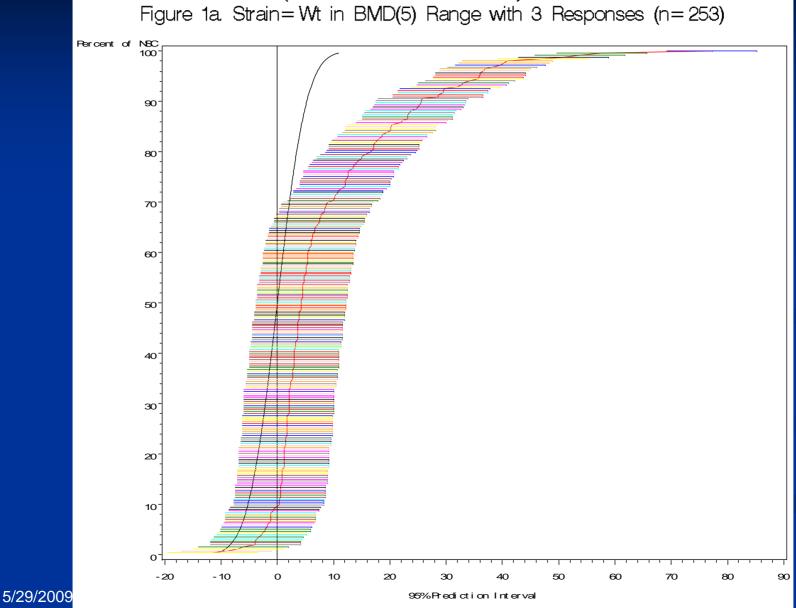


Response* (from 100) : * RESP

5/29/2009

Cumulative Distribution of BLUP Estimates

(n=253 chemicals)



hnees07p41. sas 9/13/2007 by EJS

Conclusions

- We can learn from data- even if it isn't an experiment.
- Estimation is the key- Hypothesis testing may lead us astray.
- More accurate estimates are possible with Mixed models
 - Require minimal additional assumptions
 - Dampen some of the response error
- Predictors are related to Bayesian methods

Thanks

