

Epidemiological Evidence for Possible Radiation
Hormesis from Residential Radon Exposure:
A Case-Control Study Conducted
In Worcester County, MA.

Richard E. Thompson

Department of Biostatistics

Johns Hopkins Bloomberg School of Public Health

OUTLINE OF TALK

- Background on Dosimetry and Study Design

- Review of Overall Results

- Overview of Models Used to Analyze the Data

 Discussion of How these Results Compare to Other North American Studies

DOSIMETRY

Radon measured in yearlong exposure

- 'Blanks' and 'spikes' were in each batch

- Number determined by U.S. EPA's National Air and Radiation Environmental Lab in AL

- Correction factor was calibrated from spikes

1/10 homes had two detectors placed side-by-side

Case-Control Design (1 case : 2 controls)

- 200 cases / 397 controls

- All were members of same HMO

- All were residents of Worcester, Co

- Study protocol followed CT study

Cases

- ≥ 40 years of age
- Primary lung cancer histologically or cytologically confirmed
- Minimum of 10 year residency

Controls

- Randomly selected from same HMO
- Two controls matched to each case by gender and age (+/- 2.5 years).

Extensive interviews were conducted for each case and control – general demographics

A detailed smoking history was obtained on the type and number of cigarettes smoked / decade

Surrogate interviews were obtained due to death

- Spouse or offspring were used as surrogates
- 3.3% of controls and 21.5% of cases

Distribution of wakeful time spent in the living room, bedroom(s), and other levels of the home

Occupancy distribution determined placement of detectors

-Estimated exposure weighted by this distribution of in-home occupancy

- Accounted for changes in 'life-events'

STATISTICAL ANALYSIS

Conditional Logistic was used on binary outcome

- -Multivariable model controlled for smoking, residency, education, income, and job exposure
- -Smoking quantified with eight variables based on categories of pack-years (current smokers) and years since last smoked (former smokers)

RESULTS

	Controls	Cases	p-value
	<u>0</u> 0		
Residency (y)	'0		
< 20	90 (22.7%)		0.081
20–39	203 (51.1%)		
≥ 40	104 (26.2%)	44 (22.0%)	
		0	
		10	

RESULTS Unadjusted OR for Income and Education

	Cases/ Controls	Odds Ratio
	\(\rangle\)	
<\$30,000/y	109/159	1.00
≥ \$ 30,000 / y	58/190	0.37^{c}
< High School	67/77	1.00
H.S. Graduate	90/149	- 0.66 ^a
≥ Some College	40/165	0.22 ^c

a $p \le 0.10$ b $p \le 0.05$ c $p \le 0.001$

RESULTS

Unadjusted OR for Job Exposure

	Cases/ Controls	Odds Ratio
0 years 1-9 years ≥ 10 years	134/290 25/52 41/55	1.00 1.07 1.74 ^b

a $p \le 0.10$ b $p \le 0.05$ c $p \le 0.001$

RESULTS Unadjusted OR for Current Smokers

	Cases/ Controls	Odds Ratio
	2	
Never Smoked	15/162	1.00
5-30 Pack-y	15/12	10.75 ^c
30-50 Pack-y	40/12	50.23 ^c
50-60 Pack-y	16/7	49.26 ^c
> 60 Pack-y	34/8	68.39 ^c

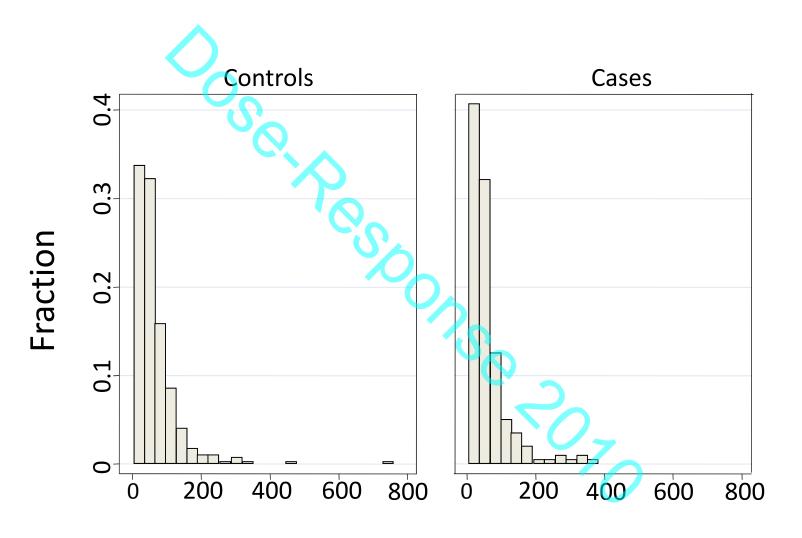
a $p \le 0.10$ b $p \le 0.05$ c $p \le 0.001$

RESULTS Unadjusted OR for Former Smokers

	Cases/ Controls	Odds Ratio
Never Smoked	15/162	1.00
3-5 y	20/13	17.66 ^c
6–10 y	22/16	19.50 ^c
11–15 y	15/31	6.12 ^c
> 15 y	23/136	2.09 ^a

a $p \le 0.10$ b $p \le 0.05$ c $p \le 0.001$

RESULTS

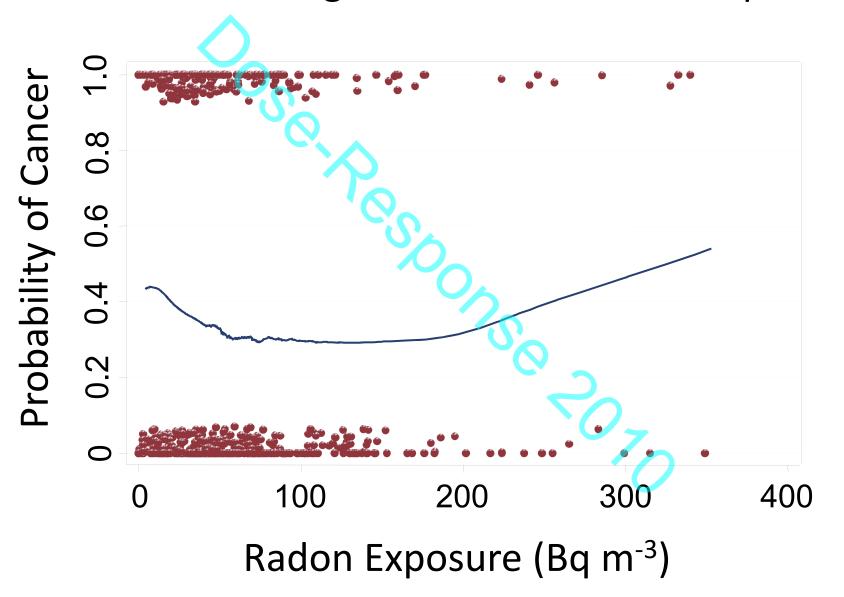

Observed Mean Rn Concentrations in Bedroom, Living Room, and Basement

MEAN (SD) =
$$61.6$$
 (77.6) Bq m⁻³

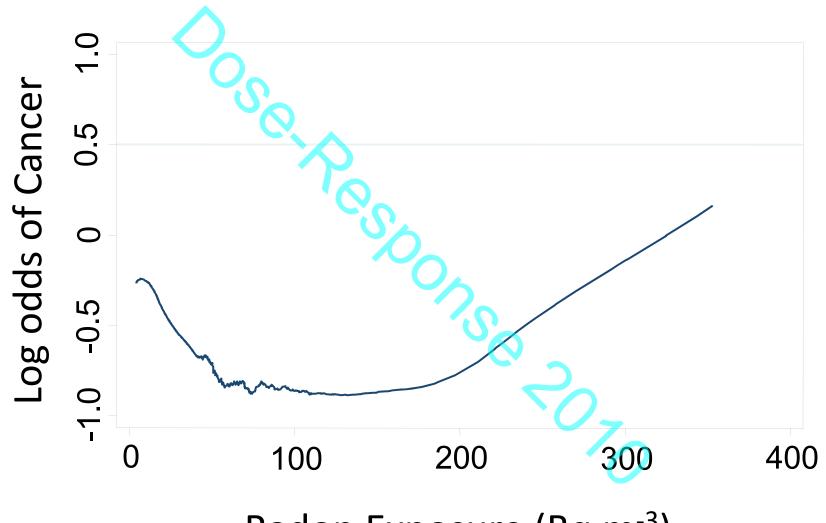
MEAN (SD) = $63.5 (79.4) \text{ Bg m}^{-3}$

MEAN (SD) = $177 (186) \text{ Bq m}^{-3}$

Distribution of Weighted Radon Exposure



Radon Exposure (Bq m⁻³)

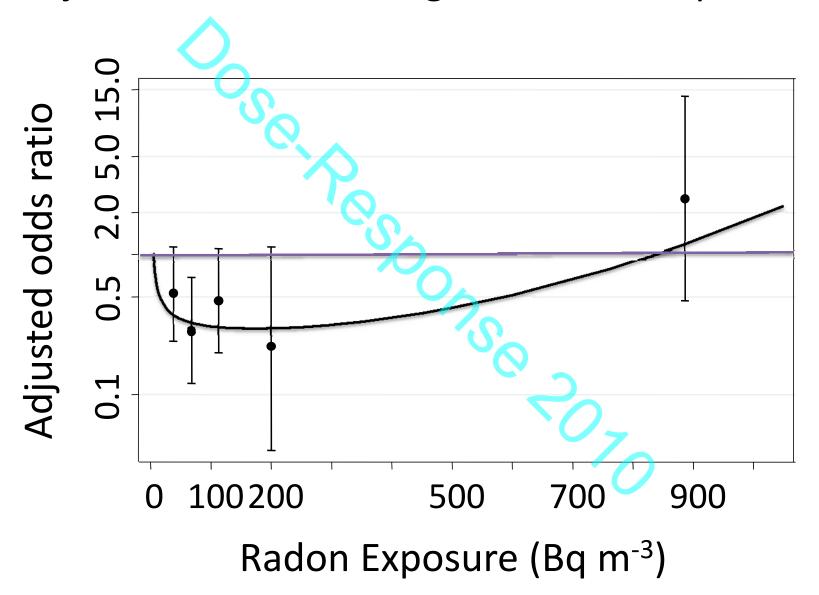

RESULTS

	Controls	Cases	p-value
Mean Rn exposure	66.3 (65.2)	67.5(118.5)	0.086
One outlier removed (~1511 Bq m ⁻³)	66.3 (65.2)	60.2 (59.4)	0.047
Median Rn exposure	50.2	43.7	0.039
One outlier removed	50.2	43.6	0.030

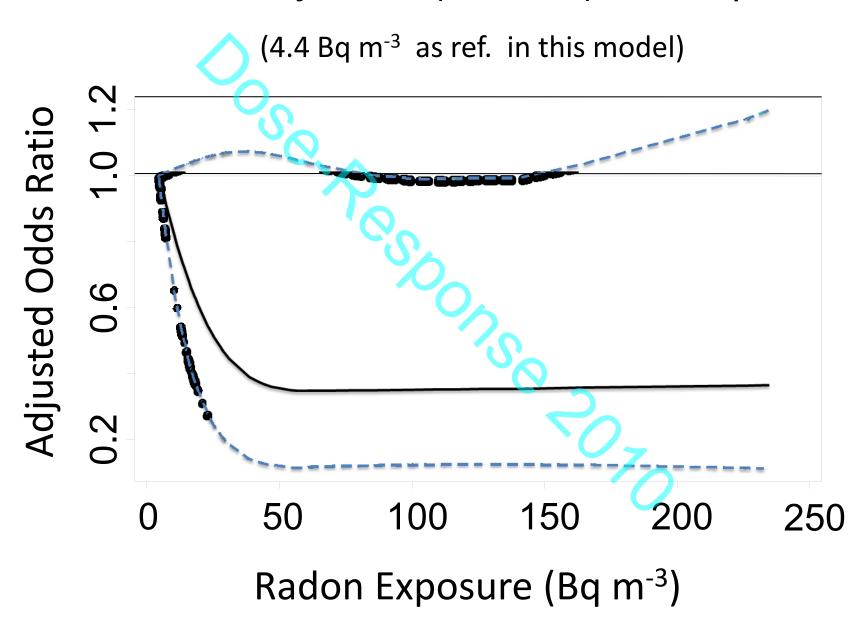
Lowess Smoothing of Cancer on Radon Exposure

Lowess Smoothing – Logit Scale

Radon Exposure (Bq m⁻³)

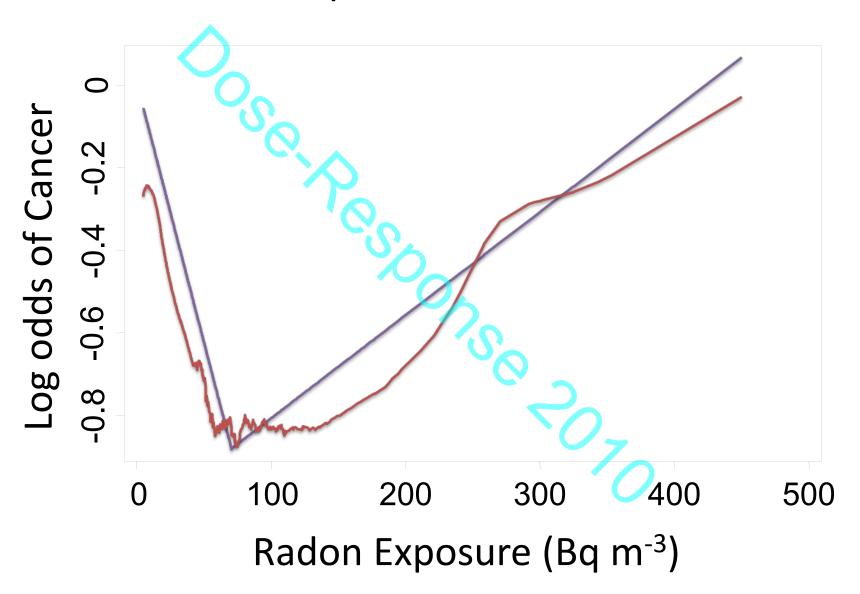

RESULTS

Unadjusted OR for Categories of Exposure


	Cases/ Controls	Odds Ratio
< 25 Bq m ⁻³	57/70	1.00
25–< 50 Bq m ⁻³	60/127	0.53 ^b
50–< 75 Bq m ⁻³	34/89	0.45 ^b
75–< 150 Bq m ⁻³	34/86	0.44 ^b
150-< 250 Bq m ⁻³	8/18	0.49
\geq 250 Bq m ⁻³	7/7	1.20

a $p \le 0.10$ b $p \le 0.05$ c $p \le 0.001$

Adjust OR from Rn Categories – Cubic Spline Fit


Predicted Adjust OR (95% C.I.) Cubic Spline

Optimal Knot Based on Log-likelihood -214.5 Log-likelihood -215 100 50 150 200 70

Linear Spline Knot

Linear Spline Fit to the Data

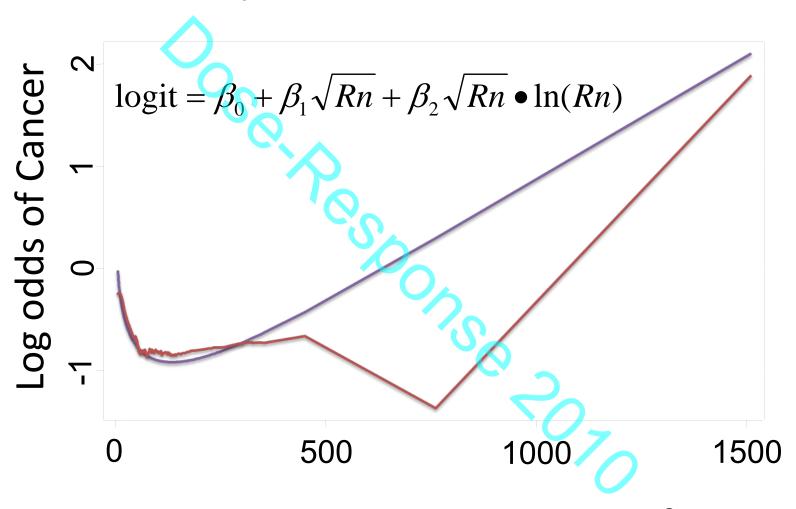
Results from Linear Spline Model

 $< 70 \text{ Bq m}^{-3}$

AOR [95% CI] = 0.984[0.970, 0.998] (p = 0.021)

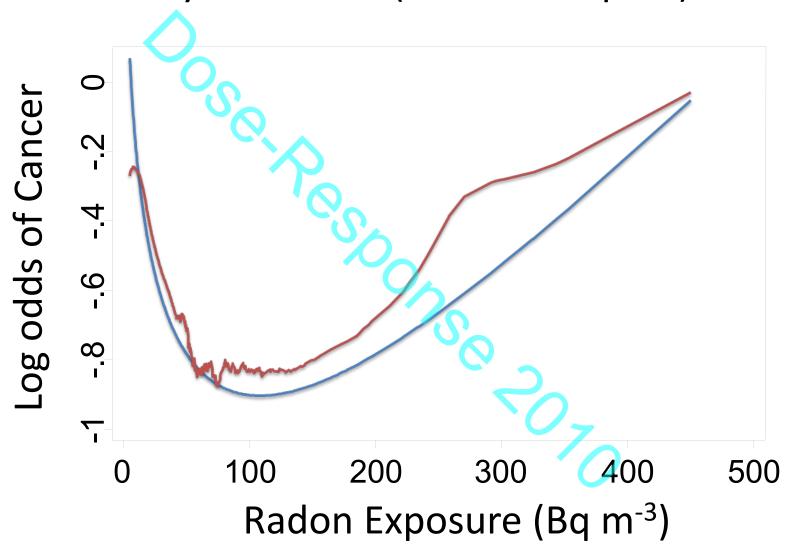
 \geq 70 Bq m⁻³

AOR [95% CI] per 100 Bq $m^{-3} = 1.246 [0.877, 1.771]$


Comparison with N. American Pooling Study:

AOR [95% CI] per 100 Bq m
$$^{-3}$$
 = 1.18 [1.02, 1.43]

(≤ 2 residences / ≥ 20 years α -track Rn meas.)


(all data / subjects)

Polynomial Fit to the Data

Radon Exposure (Bq m⁻³)

Polynomial Fit ($Rn < 450 Bq m^{-3}$)

62.5 Bq m⁻³ v. 4.4 Bq m⁻³

	AOR	95% CI
Cubic Spline	0.35	[0.14, 1.07]
Linear Spline	0.39	[0.18, 0.87]
Polynomial Model	0.33	[0.12, 0.90]
Categorical Model [50 - <75 v. 25]	0.31	[0.13, 0.73]

112.5 Bq m⁻³ v. 4.4 Bq m⁻³

	AOR	95% CI
Cubic Spline	0.35	[0.13, 0.99]
Linear Spline	0.38	[0.16, 0.91]
Polynomial Model	0.29	[0.09, 0.90]
Categorical Model [75 - <150 v. 25]	0.47	[0.20. 1.10]

200 Bq m⁻³ v. 4.4 Bq m⁻³

	AOR	95% CI
Cubic Spline	0.36	[0.12, 1.10]
Linear Spline	0.46	[0.19, 1.12]
Polynomial Model	0.29	[0.08, 1.00]
Categorical Model [150 - <250 v. 25]	0.22	[0.04, 1.13]

880 Bq m⁻³ v. 4.4 Bq m⁻³

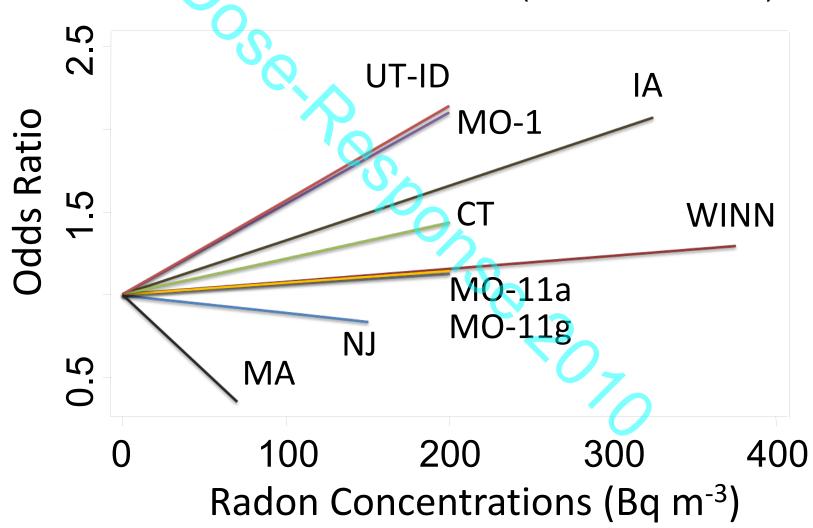
	AOR	95% CI
Cubic Spline	0.47	[0.11, 2.04]
Linear Spline	2.07	[0.14, 31.7]
Polynomial Model	1.81	[0.11, 29.1]
Categorical Model [>= 250 v. 25]	2.50	[0.47, 13.46]

Comparison with N. American Pooling Study:

Krewski et al (2006):

L.S. (\geq 70 Bq m⁻³):

LNT Model from Krewski et al 2006


$$OR(x) = 1 + 0.0018x$$

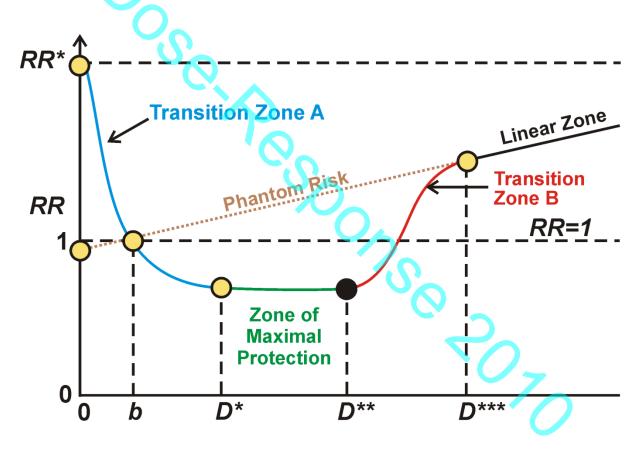
OR at 880 Bq $m^{-3} = 2.58 [1.18, 4.79]$

Cat. OR [95% CI] = 2.50[0.47, 13.5]

L.S. OR [95% CI] = 2.07 [0.14, 31.7]

Results of N. American Studies (Krewski et al 2006)

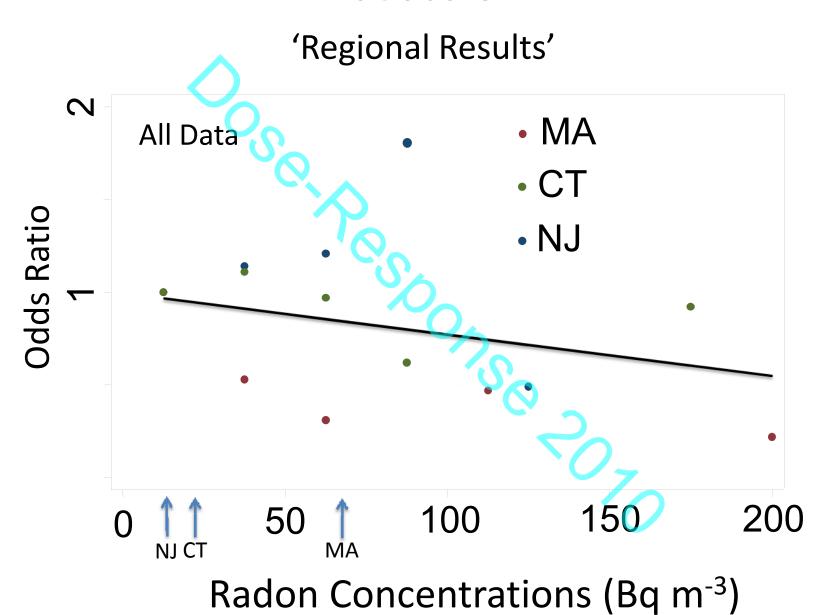
Can Variability of Predicted Risk from All Studies be Due to Random Sampling Variability?

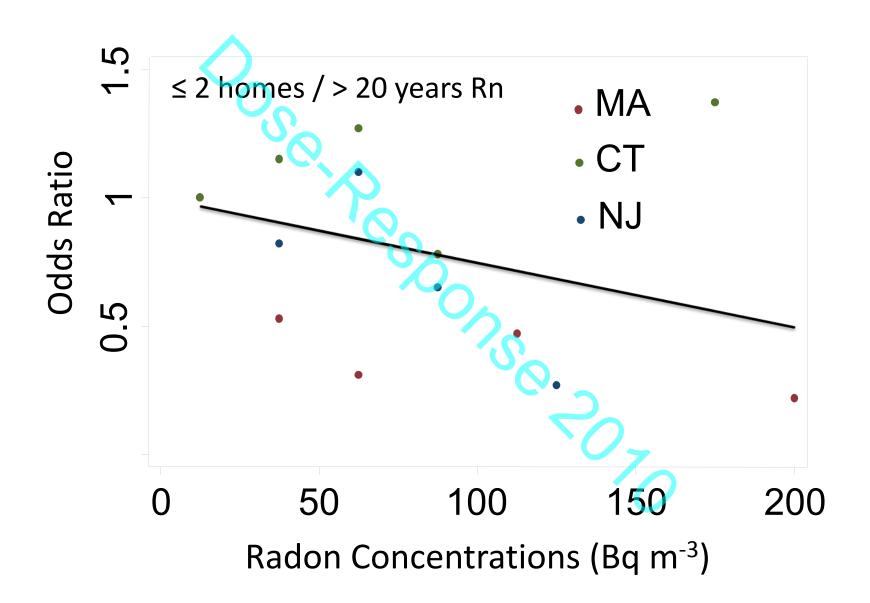

- All studies estimate the 'true' radon risk
- Deviance from 'truth' is random variability
- We can't dismiss this possibility

ALTERNATIVELY

Underlying and Unknown Mechanism(s)?

- All studies estimate 'regional' radon risk?
- Site-specific dose-response relationships?
- Adaptive protection against high LET?
 - Activated by low LET at some Rn levels
 - Silenced by high LET at other Rn levels


Hormetic Relative Risk Model – Adapt. Prot. Resp.

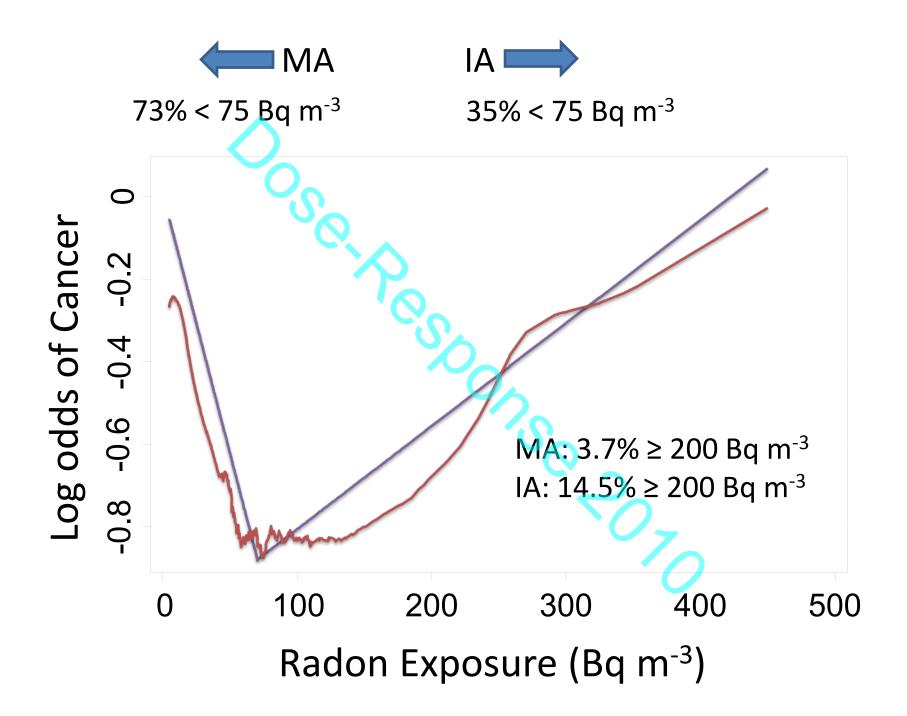


Scott et al. (2009) Dose-Response 7:104-31

Hormetic Relative Risk Model

- Transition Zone A: Low LET stimulates APR
- Maximal Protection: Zone where everyone has APR
- Transition Zone B: Transition to silencing of APR
- Linear Zone: Everyone has APR silenced
- Stochastic: Thresholds person-specific

What About the Sites with High Doses of Rn?


Consider IA Data:

•EOR $[95\% \text{ CI}] = 0.44 [0.05, 1.59] / 100 \text{ Bq m}^{-3}$

•Mean Rn concentration = 127 Bq m^{-3}

•IA data 'drives' the Krewski et al results

•Does IA data contradict MA data?

Is it possible to perform case-control studies to test For APR at the human population / ecological level?

- Measure ambient low LET from Rn decay and other radio-isotopes / high LET alpha Rn exposure
- •Possible to measure 'sign' given 'noise of humans?
- Possible to quantify low LET given multiple sources?
- •Data available to power such a study?

CONCLUSION

- Hormetic drip seen in the dose-response curve from Worcester County, MA data
- Good agreement with Krewski et al at high Rn levels
- Suggestions possible presence of low LET initiated APR that protects against high LET Rn exposure
- MA data provides 'inspiration' for other case-control studies to look at low LET in conjunction with high LET Radon Exposure

Acknowledgments

Co-authors
Donald F. Nelson
Joel H. Popkin
Zenaida Popkin

Colleague
Elizabeth Johnson Colantuoni

Lung Cancer Patients, their Families and, the Matched Controls