

Protecting the Heart with Exercise

John W. Calvert, Ph.D.

Preconditioning in Biology and Medicine: Mechanisms and Translational Research

April 21, 2015

Cardiovascular Disease

- Cardiovascular disease continues to be a leading source of mortality and morbidity in the world despite advances in health care practices.
- Economically, it is estimated that about \$500 billion is spent each year.
- As such, the development and implementation of therapeutic strategies to combat CVD remains a need.

Risk Factor

- Age, gender, and genetics are important risk factors associated with the development of CVD.
- However, the modern lifestyle has become an apparent risk factor.
- This sedentary lifestyle includes a high incidence of smoking and consists of a diet comprised mainly of saturated fats and sugar and devoid of fruits and vegetables.
 - As a result, hypertension, hyperlipidemia, insulin resistance, obesity, and diabetes are major risk factors for the development of CVD.

Exercise and Cardioprotection

- Numerous studies have linked a reduction in the rate of initial coronary artery disease events in physically active individuals
- Chronic exercise training has been shown to reduce many risk factors related to cardiovascular disease, including:
 - High blood pressure
 - High cholesterol
 - Obesity and Insulin resistance
- Protective effects are not confined to the period of exercise

Mechanisms of Exercise-Mediated Cardioprotection

- The cardioprotection afforded by exercise has been attributed to its ability to increase:
 - Endogenous antioxidant defenses (SOD and catalase)
 - Heat-shock proteins
 - Endothelial nitric oxide synthase (eNOS)
 - Activate K_{ATP} channels
- Recent studies have reported that many of these classic PC signals may not be essential for the observed cardioprotection

Nitric Oxide and Exercise

 The expression and activity of eNOS is increased in response to shear stress during exercise

Aorta from Dogs

Northern blot showing that exercise induces en tric oxide synthase (ECNOS) gene expression ts. Total RNA (10 μ g) from two exercised (Ex) dog I (C) dog was hybridized with full-length cD IS, von Willebrand's factor (vWF), or glyceraldwhate dehydrogenase (GAPDH) and washed uncency conditions as described.

it from 2.89±0.50 to 6.20±0.42 L/min (n=5 ating that the proximal aorta was clearly ed to high-flow velocity. Because of diffict solation of adequate amounts and high-from large coronary arteries and corona ssels, we isolated aortic endothelial cell RN ws Northern blot analysis of total RNA i aortic endothelial cell scrapings from cor ised dogs probed (under high-stringency

LIMA from patients with stable CAD

Importance of Nitric Oxide during Exercise

- Match tissue oxygen and substrate supply to demand
 - Inducing vasodilatation of arteries in both the skeletal muscle and the heart
 - Altering carbohydrate metabolism in skeletal muscle through an enhancement of glucose uptake and inhibition of glyceraldehyde-3phosphate dehydrogenase
- Animals deficient in eNOS do not exercise to the same extent as wild-type controls

Nitric Oxide Metabolites and Exercise

- Plasma nitrite and nitrosothiol levels are increased during exercise in both rodents and humans
 - Classically viewed as indirect markers of NO bioavailability

•Nitrite

- Endogenous storage form of NO
- Reduced to NO during ischemia/hypoxia

Nitrosothiols

- •Formed by reaction of NO or nitrite with a cysteine residue
- Reversible protective shield to prevent the irreversible oxidation of proteins
- •Redox sensitive NO donor

Table 2. Changes in plasma $NO_{\overline{2}}$ before and after exercise

Groups	NO-2, μmol/l	
	before exercise	after exercise
Athletes Sedentary subjects	41.40 ± 6.06 (n = 8)*	$56.00 \pm 9.90 \ (n = 8)^a$
Younger Older	$23.78 \pm 5.74 $ (n = 12) $22.17 \pm 6.14 $ (n = 12)	$44.73 \pm 6.48 \text{ (n = 12)}^{a}$ $45.88 \pm 9.84 \text{ (n = 12)}^{a}$

All values expressed as mean \pm SD of the number of subjects shown in parentheses. Data were analysed by one-way analysis of variance followed by the Bonferroni t test.

* p < 0.001 when compared with inactive younger and older subjects; a p < 0.05 when compared before exercise.

PHYSIOLOGICAL NITRITE (NO2) HOMEOSTASIS

Purpose

Investigate if Nitrite and Nitrosothiols formed during exercise could be stored in the heart and if they could contribute to the sustained cardioprotective effects of exercise

Voluntary Exercise Model

Daily Running Distances and Heart Weights

Cardiac NOS Expression and NO Levels following Exercise

Myocardial Injury 45 min Ischemia and 24 hr or 1 wk Reperfusion

Myocardial Infarct Size

45 min Ischemia and 24 hr Reperfusion

Are the sustained cardioprotective effects of exercise mediated by NO metabolites?

Voluntary Exercise Model

Myocardial Injury

45 min Ischemia and 24 hr Reperfusion

NO Levels and Infarct Size

*p<0.05, **p<0.01, ***p<0.001 vs. Sedentary

What leads to the activation of eNOS during exercise?

- Activation of eNOS during exercise can be caused by shear stress
- Shear induced signaling can be mediated by:
 - · Akt
 - · PKA
 - AMPK

β₃-Adrenergic Receptors in the Heart

- Three populations of β -adrenergic receptors (β -ARs) potentially modulate cardiac function (β_1 -, β_2 -, and β_3 -ARs)
- G protein-coupled receptor superfamily and modulate cardiac function after stimulation by catecholamines
- β_3 -ARs have recently emerged as potential targets for the treatment of cardiovascular diseases
 - Hypertension
 - · Acute myocardial infarction
 - · Heart failure

β₃ – ADRENERGIC RECEPTOR ACTIVATION AND ENDOTHELIAL NITRIC OXIDE SYNTHASE

β-Adrenergic Receptor Expression following Exercise

*p<0.05, **p<0.01, ***p<0.001 vs. Sedentary

Voluntary Exercise Model

Cardiac NOS Expression

β_3 -ARKO Mice

NO Levels following Exercise

β_3 -ARKO Mice

Myocardial Injury

45 min Ischemia and 24 hr Reperfusion

EXERCISE AND NITRIC OXIDE HOMEOSTASIS

Summary and Conclusions

- Exercise provides sustained cardioprotection against acute myocardial ischemia-reperfusion injury by increasing NO metabolites
- β_3 -ARs play a critical role in regulating:
 - the phosphorylation and coupling of eNOS
 - the generation of NO in response to exercise
- β_3 -AR-eNOS-NO signaling axis is important for how the heart adapts to exercise and is essential for exercise-mediated cardioprotection

Colleagues and Collaborators

Calvert Lab

Collaborators

Larry A. Barr, Ph.D.
Yuuki Shimizu, M.D., Ph.D.
Travis M. Fields, B.S.

Chad K. Nicholson, B.S. Jonathan P. Lambert, B.S.

Ahsan Husain, Ph.D. - Emory University
Nawazish Naqvi, Ph.D. - Emory University
Eric Ortlund - Emory University
David J. Lefer, Ph.D. - LSU-New Orleans
John W. Elrod, Ph.D. - Temple University
Chi-Wing Chow, Ph.D. - AECOM
Junichi Sadoshima, M.D., Ph.D. - UMDNJ
Jeffery D. Molkentin, Ph.D. - Cincinnati
Children's Hospital
Rui Wang, Ph.D. - Lakehead University

