Ischemic Conditioning: *The Comorbidity Conundrum*

Karin Przyklenk PhD

Director, Cardiovascular Research Institute
Professor, Departments of Physiology & Emergency Medicine
Wayne State University School of Medicine
Detroit MI

14th Annual Dose Response Conference: Preconditioning in Biology and Medicine University of Massachusetts, Amherst MA 22nd April, 2015

cardiomyocytes need oxygen, nutrients to survive and function

 blood supply to myocytes provided via the coronary arteries if coronary arteries become occluded, myocytes become ischemic

Occlusion ischemia myocardial infarction

Clinical Example

In 2015, >1 million Americans will have a 'heart attack'

Occlusion ischemia myocardial infarction

- goal: reduce myocardial infarct size
- current treatment: timely reperfusion
 - 'price' of reoxygenation: lethal reperfusion injury
- can we do better?

Occlusion ischemia myocardial infarction

- goal: reduce myocardial infarct size
- current treatment: timely reperfusion
- can we do better?
 - heart can be 'conditioned'; rendered resistant to ischemia-reperfusion injury
 - chemical, pharmacological, exercise conditioning
 - ischemic conditioning

- definitions: 'what' and 'how'
- the goal: preclinical promise to clinical translation
 - the comorbidity conundrum

- preconditioning
- postconditioning
- remote conditioning

initiate the up-regulation of endogenous protective mechanisms that render the heart resistant to ischemia-reperfusion injury; reduce infarct size

Control

'Conditioned'

Preconditioning

"... brief, intermittent episodes of ischemia have a protective effect on myocardium that is later subjected to a sustained bout of ischemia."

Murry et al, *Circulation* 1986;74:1124-1136.

i.e., that which does not destroy us makes us stronger

Reduction of Infarct Size with Preconditioning

• since 1986: has been the focus of >4,000 publications

Expanding the paradigm

Postconditioning

- mechanical strategy to modify the early seconds of reperfusion
- Initially described in the canine model; confirmed in multiple models and species
- definition: brief episodes of 'stuttering' reflow, followed by full and sustained reperfusion
- efficacy: comparable to preconditioning

Start slow . . .

Reduction of infarct size with postconditioning: mouse model

Expanding the paradigm

Reduction of infarct size with remote conditioning: swine model

- model: anesthetized pig
- remote stimulus: skeletal muscle ischemia
- endpoint: infarct size

- unprecedented agreement among ~5,000 preclinical studies: pre- post- and remote conditioning reduce infarct size
- molecular mechanisms

- unprecedented preclinical agreement: pre- post- and remote conditioning reduce infarct size
- molecular mechanisms

- unprecedented preclinical agreement: pre- post- and remote conditioning reduce infarct size
- postconditioning, remote conditioning: poised for clinical translation . . .
 - focus of Phase II, Phase III clinical trials

- unprecedented preclinical agreement: pre- post- and remote conditioning reduce infarct size
- in contrast:
 - results of Phase II trials have been mixed
 - i.e., remote conditioning: outcomes have ranged from positive to neutral to deleterious

- unprecedented preclinical agreement: pre- post- and remote conditioning reduce infarct size
- in contrast:
 - results of Phase II trials have been mixed
 - recent meta-analyses have not confirmed significant benefit
 - outcome of a highly anticipated Phase III trial: negative
- progress toward clinical translation: 'somewhere between frustrating and disappointing' (Shevchuck & Laskey, Circulation Cardiovasc Interv 2013;6:484-492)
- many potential explanations . . .

The problem . . .

- overwhelming majority of preclinical studies showing infarct size reduction with ischemic conditioning have been conducted using healthy, adult cohorts
 - does not reflect the risk factors and comorbidities associated with cardiovascular disease; acute myocardial infarction (diabetes, aging, hypertension, hyperlipidemia, etc.)

Preconditioning

Postconditioning

Remote Preconditioning

The problem . . .

- overwhelming majority of preclinical studies showing infarct size reduction with ischemic conditioning have been conducted using healthy, adult cohorts
 - does not reflect the risk factors and co-morbidities associated with cardiovascular disease; acute myocardial infarction (diabetes, aging, hypertension, hyperlipidemia, etc.)
 - growing evidence that aging, diabetes are associated with differences in expression of key cardioprotective mediators; dysregulation of cardioprotective signaling ('survival' kinases)

in models of diabetes, aging . . .

Postconditioning: model of type-2 diabetes

consensus among 5 published studies: protection lost or attenuated in type-2 diabetic models (Br J Pharmacol 2015:172:1961-73)

- postconditioning was not cardioprotective in db/db mice
- rather, infarct size was exacerbated in mice that received the amplified, 6-cycle postconditioning stimulus

Postconditioning: model of aging

- 2 year old mice: characterized by physiologic, molecular hallmarks of cardiovascular aging
- postconditioning failed to reduce infarct size

Postconditioning: all patients (n=115)

CK release (surrogate for infarct size) was attenuated in the postconditioned group receiving stuttered reflow (multiple balloon inflations) vs controls

Postconditioning: subset >65 years (n=37)

 favorable reduction in CK release with postconditioning was diminished

Vinten-Johansen, Przyklenk et al, Antiox Redox Signal 2011;14:791-80.

- compelling preclinical evidence: preconditioning, postconditioning and remote conditioning reduce infarct size
- postconditioning, remote conditioning: poised for clinical translation . . .
- <u>however</u>, success will depend on improving our understanding of the effects of comorbidities on the 'conditioned' phenotype