Ischaemic Preconditioning To Enhance Sport Performance:

“Waste of time or no time to waste?”

Prof. Dick Thijssen
Liverpool John Moores University
Radboud university medical center
Overview

“Doctor, is this the normal procedure?”

“Trust me, it has great exercise benefits!”

Sport performance

Mechanisms

Exercise preconditioning
Performance: *benefits of preconditioning*

Design: cross-over design (IPC vs control)

Subjects: 15 healthy young

IPC: Leg 3 x 5 Bilateral (local)

Workload: 1.6%

1. De Groot *Eur J Appl Physiol* 2010
Performance: benefits of preconditioning

Design: cross-over design (IPC vs control)

Subjects: 17 healthy young

IPC: Leg 3 x 5 Bilateral (local)

Control

IPC prior to exercise

Cycling, then IPC, then max test

No change in O_2 uptake, but improved workload

Yes: 2 papers
No: 7 papers

Yes: 5 papers
No: 2 papers

Performance: *type of exercise*

Types of exercise

1. Anaerobic – alactic (sprint)
2. Anaerobic – lactic (mixed)
3. Aerobic (endurance)

1. McArdle *Exercise Physiol* 2016
Performance: *type of exercise – anaerobic, alactic*

Design: cross-over design (IPC vs placebo vs control)

Subjects: 17 healthy young

IPC: Leg 4 x 5 Bilateral (local)

Exercise: 12-repeated max

Significant improvement, but similar to placebo
Performance: type of exercise – anaerobic, lactic

Design: cross-over design (IPC vs control)
Subjects: 14 rowers
IPC: Arm 4 x 5 Unilateral

Design: cross-over design (IPC vs control)
Subjects: 11 swimmers (elite)
IPC: Arm 4 x 5 Unilateral

186.5±3.6 s to 185.7±3.6 s
↑ 0.5%

110±16 m to 119±14 m
↑ 7%

Significant improvement

4. Patterson MSSE 2015
Performance: type of exercise – anaerobic, lactic

Design: cross-over design (IPC vs SHAM)
Subjects: 18 National level swimmers
IPC: Arm 4 x 5 unilateral

Significant improvement, especially in swimming

Enhanced exercise performance

1.11%
0.7 s (0.05-1.35 s)
Performance: *type of exercise – aerobic*

Design: cross-over (IPC vs SHAM)
Subjects: 13 trained men
Exercise: 5-k running
IPC: Legs 4 x 5 bilateral

Design: cross-over (IPC vs SHAM vs CT)
Subjects: 15 trained men
Exercise: supramaximal running
IPC: Legs 4 x 5 bilateral

Significant improvement?
Performance: type of exercise

Types of exercise

1. Anaerobic – alactic (sprint) ✗
2. Anaerobic – lactic (mixed) ✓
3. Aerobic (endurance) ✓❓

OK….it may work…..but……

1. Where to apply IPC? (remote vs local)
2. When to apply IPC? (early vs late)
3. How frequently apply IPC? (‘dose-response’)

1. McArdle Exercise Physiol 2016
Performance: *IPC vs RIPC*

Design: cross-over (IPC vs SHAM)
Subjects: 13 trained men
Exercise: handgrip exercise
IPC: Legs 3 x 5 bilateral

RIPC seems to work

- Swimmers (arms only)
- Rowers (arms only)

1. Barbosa *SJMSS* 2015
2. Seeger *JSMS* 2017
3. Cocking *In Review* 2017
Performance: *Early vs late preconditioning*

Design: cross-over (1h vs 2h vs 24h)

Subjects: 15 trained swimmers

Exercise: 50-m swim

IPC: Legs+arms 4 x 5 bilateral

Late IPC seems to work

5-km: R=0.67 for early (30-min) vs late (24-h)
Performance: *Dose-response relationship*

Design: cross-over (sham vs IPC vs doses)
Subjects: 15 trained runners
Exercise: 5-km run
IPC: Legs 4 x 5 bilateral

No dose-response?

1. Cocking *In Review* 2017
Performance: summary

Types of exercise

1. Anaerobic – alactic (sprint)
2. Anaerobic – lactic (mixed)
3. Aerobic (endurance)

OK….it may work…..but……

1. Remote and local IPC
2. Early and late IPC
3. Dose-response relation

FUTURE WORK
Practical guidelines for athletes!!

How does it work?
Mechanisms: Oxygen uptake kinetics

Peak oxygen uptake: similar

Submaximal oxygen uptake: similar

Oxygen uptake kinetics: similar
Mechanisms: *Muscle contraction kinetics*

Higher contraction and relaxation rates

More muscle activity

1. Barbosa *SJMSS* 2015 2. Cruz *JAP* 2015
Mechanisms: *Lactate kinetics*

Design: cross-over design (IPC vs SHAM)

Subjects: 13 moderately trained males

IPC: Leg 4 x 5 Bilateral (LOCAL)

Lower lactate accumulation

No difference in peak lactate!!!
Mechanisms: Blood flow kinetics

Design: cross-over (IPC vs SHAM)
Subjects: 15 healthy males
Exercise: cycling exercise

More rapid blood flow kinetics

1. Kido Physiol Rep 2015
Mechanisms: reduced vascular injury

Design: cross-over design (IPC vs SHAM)

Subjects: 13 moderately trained males

IPC: Leg 4 x 5 Bilateral (REMOTE)

RIPC prevents exercise-induced vascular injury?

RIPC prevents exercise-induced vascular injury?

1. Bailey *AJP* 2012
Mechanisms: *Pain sensation*

Design: cross-over design (IPC vs SHAM)
Subjects: 13 trained males
Exercise: supramaximal cycling

Design: cross-over (IPC vs SHAM)
Subjects: 14 healthy males
Exercise: post-exercise muscle ischemia

Lower pain sensation?
Performance: summary

Types of exercise

<table>
<thead>
<tr>
<th>Anaerobic – alactic (sprint)</th>
<th>Anaerobic – lactic (mixed)</th>
<th>Aerobic</th>
</tr>
</thead>
</table>

Mechanisms

<table>
<thead>
<tr>
<th>Oxygen kinetics</th>
<th>Muscle kinetics</th>
</tr>
</thead>
</table>

FUTURE WORK

Better understanding of (molecular) mechanisms.

Reduced vascular injury.... Does exercise have preconditioning effects?

Remote and local IPC

<table>
<thead>
<tr>
<th>Early and late IPC</th>
<th>Dose-response relation</th>
</tr>
</thead>
</table>

1. McArdle *Exercise Physiol* 2016
Exercise preconditioning: reduced cardiac injury

Design: Cross-over design (1. IPC, 2. interval exercise)

Subjects: 12 healthy subjects

Measurements: infarct size (animals)

25-min perfusion (Control, IPC, Exercise)
40-min ischemia
120-min reperfusion

1. Michelsen *Bas Res Cardiol* 2013

Radboudumc
Exercise preconditioning: *reduced cardiac injury*

Interval exercise has *IPC-like* effects to prevent IR-injury

Effects are mediated through a blood-borne substance
Exercise preconditioning: prevents vascular injury

Design: Cross-over design (1. control, 2. endurance exercise, 3. interval exercise)

Subjects: 14 healthy subjects

Measurements: FMD pre/post IR-injury

Acute effects exercise: Has exercise IPC-like effects?

- **Control:** 45-min rest
- **Endurance:** 43-min exercise
- **High-intensity interval:** 27-min exercise (isocaloric)

1. Seeger *AJP Heart Circ Physiol* 2015
Mechanisms: exercise prevents vascular injury

Exercise has IPC-like effects to prevent IR-injury, which may depend on the type of exercise.

FUTURE WORK: do these effects also contribute to protection against cardiovascular events?

1. Seeger AJP Heart Circ Physiol 2015
Cardioprotection: *exercise preconditioning reduces risk*
Cardioprotection: *exercise preconditioning reduces risk*

1. Van den Munckhof *AJP-Heart* 2013
2. Maessen *AJP-Heart* 2017

Lifelong exercise prevents ischaemic injury with ageing

Older age:
- Larger ischaemic injury
- No effect preconditioning

1. Van den Munckhof *AJP-Heart* 2013
2. Maessen *AJP-Heart* 2017
Relevant for athletic performance

1. Ischaemic preconditioning *improves* aerobic-anaerobic sport performance.

2. Related to improved metabolic and vascular *kinetics*.

Relevant for all

Exercise preconditioning *protects* against cardiovascular (ischaemic) events.
Thank you for listening

Liverpool John Moores University:
 Prof. Danny Green
 Prof. Nigel Cable
 Prof. Helen Jones
 Dr. Ellen Dawson
 Dr. Howard Carter
 Dr. Tom Bailey
 Joseph Maxwell

University of Western Australia:
 Prof. Danny Green

Radboud University:
 Prof. Maria Hopman
 Prof. Niels Riksen
 Prof. Gerard Rongen
 Prof. Paul Smits
 Dr. Joost Seeger
 Inge van den Munckhof
 Dr. Martijn Maessen